2016 ImageNet Second
2017 CVPR
Aggregated ResidualTransformations for Deep Neural Networks
1、Introduce
采用 VGG 堆叠的思想和 Inception 的 split-transform-merge 思想,把convolution进化成为group convolution。
- 网络结构简明,模块化
- 需要手动调节的超参少
- 与 ResNet 相比,相同的参数个数,结果更好
- 打破或deeper,或wider的常规思路,ResNeXt引入一个新维度,称之为cardinality。
- 因为分组了,多个分支单独进行处理,所以和原来整个一起卷积比,硬件执行效率上会低一点
2、Architecture
32 paths 符合split-transform-merge的模式,每个paths 一模一样(采用相同的卷积参数)
上面三个设计是等价设计, 最后一个C的结构, 极其类似ResNet的bottleneck,但是通道数却多的多。ResNeXt引入Inception结构,通过稀疏连接来approach之前的dense连接。
a是ResNeXt基本单元,如果把输出那里的1x1合并到一起,得到等价网络b拥有和Inception-ResNet相似的结构,而进一步把输入的1x1也合并到一起,得到等价网络c则和通道分组卷积的网络有相似的结构。
ResNeXt 只能在 block 的 depth>3时使用. 如果 block 的 depth=2,则会得到宽而密集的模块.
0、卷积的范式:split-transform-merge。
借鉴GoogleNet Inception的模式:split-tra