AI实战营第五课笔记

MMPreTrain 代码课

视频链接: MMPretrain代码课_哔哩哔哩_bilibili

1. 安装pytorch

2. 安装mmpretrain

$ git clone https://github.com/open-mmlab/mmpretrain.git
$ cd mmpretrain
$ pip install openmin
$ min --help
$ min install -e ".[multimodal]"

3. 检测mmpretrain是否安装成功

import mmpretrain
mmpretrain.__version__
from mmpretrain import get_model, list_models, inference_model
list_models(task='Image Classfication', pattern='resnet18')
list_models(task='Image Caption', pattern='blip')
model = get_model('resnet18_8b16_cifar10')
inference_model('blip-base_3rdparty_caption', 'demo/cat-dog.png', show=True)

4. 查看图像

$ gthumb 图像路径

5. 配置参数: 模型,数据,优化器配置,运行参数配置

6. 微调

$ min train mmpretrain resnet18_finetune.py --work-dir=./exp

7. 测试

$ min test mmpretrain resnet18_finetune.py --checkpoint 模型权重路径 

8. 测试分析

$ min test mmpretrain resnet18_finetune.py --checkpoint 模型权重路径 --out result.pkl
$ min run mmpretrain analyze_results resnet18_finetune.py result.pkl --out-dir analyze
$ min run mmpretrain confusion_matrix resnet18_finetune.py result.pkl --show --include-values

9. 在真实图片进行推理

from mmpretrain import ImageClassficationInference
inference = ImageClassficationInference('./resnet18_finetune.py', pretrained='模型权重路径')
inference('图像路径', show=True)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值