时间序列数据预处理

时间序列数据是指按照时间顺序排列的一系列数据点或观测值,通常用于描述某个变量随时间的变化情况。例如,股价、气温、人口数量等都可以被视为时间序列数据。时间序列数据的预处理是进行时间序列分析的重要步骤。常见的时间序列预处理步骤包括:

  1. 构建时间序列数据:在处理时间序列数据之前,需要将原始数据按照时间顺序排序,并构建时间序列数据。
  2. 查找缺失值:在时间序列数据中,可能存在缺失值,需要对其进行查找。常用的缺失值处理方法有插值法、删除等。
  3. 查找数据集中存在的异常值:在时间序列数据中,可能存在异常值需要被识别和处理。常用的异常值检测方法有基于统计学的方法和基于机器学习的方法。

构建时间序列数据

原始数据中的时间列,可能存在时间顺序紊乱如下图这样,先将时间数据数据转成datetime格式,再进行升值排序;

import pandas as pd
#将时间列的数据转换成pandas时间格式
datac['time'] = pd.to_datetime(data['time'], format='%Y-%m-%d')
# 对时间列数据进行排序
data= data.sort_values(by='time')

时间列的时间数据是缺失的,比如2022-05-01--2022-05-31时间段的数据,一共31条时间数据,而原始数据中只要28条数据,因此需要对时间数据进行补充;

import pandas as np
datanew = pd.DataFrame()
datanew['time'] = pd.date_range('2022-05-01','2022-05-31')
#tt 为时间序列特征值/目标值
datanew['tt]']=np.nan
data = data.append(datawnew)
data = data.drop_duplicates(subset =['time']).sort_values(by['time']).reset_index(drop=True)

查找缺失值

1、在缺失值比例较大的情况下,可能影响分析的精度和可靠性时,可选择删除;

2、在缺失值较少的情况下,可以通过手动填充、插值等方法近处理;

常见的时间序列缺失值填充方法:

  • 前向填充法:用前一时刻的观测值来填充缺失值;
  • 后向填充法:用后一时刻的观测值来填充缺失值;
  • 线性插值法:使用前后两个缺失值之间的线性函数对缺失值进行插值;
  • XGBoost等机器学习模型预测法:使用机器学习模型预测缺失值

前向填充法

代码中,ffill()方法表示使用向前填充法对缺失值进行填充。将缺失值替换为该值之前的最近一个非缺失值。

import pandas as pd

# 创建示例时间序列数据,其中第2个和第4个时间点为缺失值
ts = pd.Series([1, None, 3, None, 5], index=pd.date_range('2023-04-01', periods=5, freq='D'))

# 使用向前填充方法填充缺失值
ts_ffill = ts.ffill()

print("原始数据:\n", ts)
print("\n向前填充后的数据:\n", ts_ffill)

 后向填充法

上代码中,bfill()方法表示使用向后填充法对缺失值进行填充。将缺失值替换为该值之后的最近一个非缺失值。

import pandas as pd

# 创建示例时间序列数据,其中第2个和第4个时间点为缺失值
ts = pd.Series([1, None, 3, None, 5], index=pd.date_range('2023-04-01', periods=5, freq='D'))

# 使用向后填充方法填充缺失值
ts_bfill = ts.bfill()

print("原始数据:\n", ts)
print("\n向后填充后的数据:\n", ts_bfill)

线性插值法

 代码中,interpolate()方法表示使用线性插值法对缺失值进行填充。线性插值方法是根据已知的数据点进行线性外推或者内插,以得到缺失点的估计值。默认情况下,该方法使用线性插值进行缺失值填充。

import pandas as pd

# 创建示例时间序列数据,其中第2个和第4个时间点为缺失值
ts = pd.Series([1, None, 3, None, 5], index=pd.date_range('2023-04-01', periods=5, freq='D'))

# 使用线性插值方法填充缺失值
ts_interpolated = ts.interpolate()

print("原始数据:\n", ts)
print("\n线性插值填充后的数据:\n", ts_interpolated)

 

 XGBoost填充缺失值

首先将时间序列划分为特征(X)和目标值(y)。然后我们使用70%的数据训练XGBoost回归器,并用它来预测缺失值。最后,我们返回填充后的时间序列。

# 导入必要的库
import xgboost as xgb
import numpy as np

# 构建XGBoost模型
def run_xgb(timeseries):
    # 构建特征和目标值
    X = []
    y = []
    for i in range(len(timeseries)-1):
        if timeseries[i] != None and timeseries[i+1] != None:
            X.append([timeseries[i]])
            y.append(timeseries[i+1])

    X = np.array(X)
    y = np.array(y)

    # 分割训练集和测试集
    split = int(len(X)*0.7)
    X_train, y_train = X[:split], y[:split]
    X_test, y_test = X[split:], y[split:]

    # 训练模型
    model = xgb.XGBRegressor()
    model.fit(X_train, y_train)

    # 预测并填充缺失值
    for i in range(len(timeseries)):
        if timeseries[i] == None:
            timeseries[i] = model.predict(np.array([[timeseries[i-1]]]))

    return timeseries

异常值处理

在时间序列分析中,异常值是指在数据集中出现的极端异常的观测值。这些异常值可能会对模型的预测和准确性产生负面影响,因此需要处理。

一般来说,处理时间序列异常值的方法有以下几种:

  1. 阈值的方法:该方法是将异常值定义为与正常值相比显著偏离的数据点。可以使用统计学方法来确定阈值,例如,Zscore阀值。

  2. 移动窗口的方法:该方法是计算数据点在固定时间窗口内的平均值和标准差,并识别偏离平均值很多个标准差的点。

  3. 时间序列异常检测 ADTK:adtk(Anomaly Detection Toolkit)是无监督异常检测的python工具包,它提供常用算法和处理函数;

阀值去除异常值

z-score : z标准分数,它测量数据值到平均值的距离,当数据与平均值相差2个标准差时z-score为2,如果将z-score为3作为异常值判断标准时,便相当于3sigma。(3sigma内包含99.7%的数据)

 mean = data[feature].mean()
 std = data1[feature].std()
 data['z'] = (data[feature]-mean)/std
# 异常数据
 dfk = data[data['z']>3.0]

时间序列异常检测 ADTK

详细参考Python 时间序列异常检测 ADTK

以上是时间序列数据预处理过程;

  • 2
    点赞
  • 59
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 时间序列数据预处理主要包括三个部分: 数据清洗, 数据转换和数据建模。 1. 数据清洗: 对数据进行清理, 删除重复数据, 缺失值, 异常值等。 2. 数据转换: 将数据转换为可供模型使用的格式, 如时间序列格式, 序列标准化, 时间序列重采样等。 3. 数据建模: 根据业务场景和模型类型来选择建模方法, 如时间序列分类, 时间序列预测, 时间序列聚类等。 ### 回答2: 时间序列数据预处理是指对时间序列数据进行一系列的处理操作,以提取和修正数据中的噪声,处理缺失值,调整数据的分布等,为后续的分析和模型建立提供更可靠和准确的数据基础。 首先,时间序列数据的预处理包括数据的平稳性检验和平滑处理。平稳性检验可以通过ADF检验或KPSS检验等方法来判断数据是否具有平稳性。若数据不平稳,可以采用差分或对数变换等方式进行处理,使数据具有平稳性。平滑处理可以采用滑动平均法或指数平滑法等方法,去除数据中的季节性和趋势性变动。 其次,时间序列数据还需要进行异常值和噪声的处理。异常值是指与其他数据显著不同的数据点,可以通过箱线图或Z-Score等方法检测和处理。噪声是数据中的随机波动,可以通过滤波和平滑方法,如去除异常点或使用移动平均进行平滑处理来减小噪声的影响。 此外,时间序列数据中可能还存在缺失值。针对缺失值,常用的处理方法包括删除缺失值、插值法和回归法。删除缺失值的方法一般适用于缺失值较少的情况下,插值法可以通过线性插值、拉格朗日插值或KNN插值等方法来填补缺失值,回归法则通过建立回归模型来预测缺失值。 最后,时间序列数据预处理还需要对数据进行规范化和分布调整,以便于后续的建模和分析。常用的处理方法包括标准化和归一化等。标准化可以通过Z-score或最小-最大规范化等方法将数据规范化到特定的范围。归一化则可以将数据映射到[0,1]的范围内。 总之,时间序列数据预处理是保证数据质量和准确性的重要步骤,通过对数据的平稳性处理、异常值和噪声处理、缺失值处理以及数据规范化和分布调整等操作,使得时间序列数据能够更好的用于后续的分析和建模。 ### 回答3: 时间序列数据预处理是指对时间序列数据进行清洗、转换和规范化等操作,以便更好地应用于时间序列分析和建模的过程。 首先,清洗时间序列数据是预处理的第一步。这包括处理缺失值、异常值和噪声等问题。对于缺失值,可以采用插值或删除的方式进行填补;对于异常值,可以使用统计方法或离群点检测算法进行识别和处理;对于噪声,可以使用平滑或滤波技术进行降噪。 其次,转换时间序列数据是为了使数据更符合时间序列分析的假设。常见的转换方法包括差分、对数转换和平稳化等。差分可以用来消除非平稳性和季节性,对数转换可以使数据更稳定,并且平稳化可以通过去除趋势和周期性来生成平稳序列。 最后,规范化时间序列数据是为了将不同尺度和幅度的数据放在同一量级上,以减小尺度效应。常见的规范化方法有最大最小值归一化、z-score标准化和均方根归一化等。最大最小值归一化通过将数据缩放到0到1之间;z-score标准化将数据转换为均值为0,标准差为1的分布;均方根归一化则将数据结构化为单位根。 综上所述,时间序列数据预处理包括清洗、转换和规范化等步骤,以确保数据的可用性、合理性和可比性。这些步骤有助于提升时间序列数据分析和建模的准确性和可靠性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值