keras和tensorflow的关系

2017 年中,Keras 已经被大规模采用,并与 TensorFlow 集成在一起。这种 TensorFlow + Keras 的组合让你可以:

1、使用 Keras 的接口定义模型;
2、如果你需要特定的 TensorFlow 功能或者需要实现 Keras 不支持但 TensorFlow 支持的自定义功能,可以回到 TensorFlow。
简单地说,你可以将 TensorFlow 代码直接插入到 Keras 的模型或训练管道中!
我们将使用标准的 keras 模块以及 TensorFlow 的 tf.keras 模块实现一个卷积神经网络(CNN)。

我们将在一个样本数据集上训练 CNN,然后检查结果——你会发现,Keras 和 TensorFlow 可以很融洽地合作。
TensorFlow 宣布将 Keras 集成到官方 TensorFlow 版本中已经一年多时间了。可以通过 tf.keras 子模块访问 Keras。
更重要的是,Keras + TensorFlow 的集成是无缝的,你可以直接将 TensorFlow 代码放到 Keras 模型中。

在 TensorFlow 中使用 Keras 将为你带来两全其美的好处:
你可以使用 Keras 提供的简单直观的 API 来创建模型;
Keras API 与 scikit-learn(被认为是机器学习 API 的“黄金标准”)很像;
Keras API 采用了模块化,易于使用;
当你需要自定义实现或者更复杂的损失函数时,可以直接进入 TensorFlow,并让代码自动与 Keras 模型集成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值