考研数学重要知识点整理

本文整理了考研数学中的重要知识点,包括数列求和、三角函数、极限、微分、积分、无穷级数、线性代数和概率论等内容。涵盖了从基础概念到高级技巧,如泰勒公式、多元函数极值、隐函数存在定理、傅里叶级数等,是考研数学复习的宝贵资料。
摘要由CSDN通过智能技术生成

文章目录

数学常用知识点

基础

数列求和

等比数列

a n = a 1 r n − 1 ⇒ S n = { n a 1 , r = 1 a 1 ( 1 − r n ) 1 − r a_n=a_1r^{n-1}⇒S_n=\begin{cases} na_1,r=1\\\frac{a_1(1-r^n)}{1-r} \end{cases} an=a1rn1Sn={ na1,r=11ra1(1rn)

三角函数

sin ⁡ 2 α = 1 2 ( 1 − cos ⁡ 2 α ) cos ⁡ 2 α = 1 2 ( 1 + cos ⁡ 2 α ) sin ⁡ θ + cos ⁡ θ = 2 cos ⁡ ( θ − π 4 ) = 2 sin ⁡ ( θ + π 4 ) cos ⁡ ( α ± β ) = cos ⁡ α cos ⁡ β ∓ sin ⁡ α sin ⁡ β sin ⁡ ( α ± β ) = sin ⁡ α cos ⁡ β ± cos ⁡ α sin ⁡ β \begin{aligned} \sin ^{2} \alpha&=\frac{1}{2}(1-\cos 2 \alpha)\\ \cos ^{2} \alpha&=\frac{1}{2}(1+\cos 2 \alpha)\\ \sin \theta+\cos \theta&=\sqrt{2} \cos \left(\theta-\frac{\pi}{4}\right)=\sqrt{2} \sin \left(\theta+\frac{\pi}{4}\right)\\ \cos (\alpha \pm \beta)&=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta\\ \sin (\alpha \pm \beta)&=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \end{aligned} sin2αcos2αsinθ+cosθcos(α±β)sin(α±β)=21(1cos2α)=21(1+cos2α)=2 cos(θ4π)=2 sin(θ+4π)=cosαcosβsinαsinβ=sinαcosβ±cosαsinβ

因数分解

a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a n − b n = ( a − b ) ( a n − 1 + a n − 2 b + ⋯ + a b n − 2 + b n − 1 ) \begin{aligned} a^{3}+b^{3}&=(a+b)\left(a^{2}-a b+b^{2}\right)\\ a^{3}-b^{3}&=(a-b)\left(a^{2}+a b+b^{2}\right)\\ a^{n}-b^{n}&=(a-b)\left(a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}\right) \end{aligned} a3+b3a3b3anbn=(a+b)(a2ab+b2)=(ab)(a2+ab+b2)=(ab)(an1+an2b++abn2+bn1)
{ a n − b n = ( a + b ) ( a n − 1 − a n − 2 b + ⋯ + a b n − 2 − b n − 1 ) , n 为 正 奇 数 a n + b n = ( a + b ) ( a n − 1 − a n − 2 b + ⋯ − a b n − 2 + b n − 1 ) , n 为 正 偶 数 \begin{cases} a^{n}-b^{n}=(a+b)\left(a^{n-1}-a^{n-2} b+\cdots+a b^{n-2}-b^{n-1}\right),&n为正奇数 \\ a^{n}+b^{n}=(a+b)\left(a^{n-1}-a^{n-2} b+\cdots-a b^{n-2}+b^{n-1}\right),&n为正偶数 \end{cases} { anbn=(a+b)(an1an2b++abn2bn1),an+bn=(a+b)(an1an2b+abn2+bn1),nn

泰勒公式

sin ⁡ x = x − x 3 3 ! + o ( x 3 ) arcsin ⁡ x = x + x 3 3 ! + o ( x 3 ) tan ⁡ x = x + x 3 3 + o ( x 3 ) arctan ⁡ x = x − x 3 3 + o ( x 3 ) cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 + o ( x 3 ) e x = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) = ∑ n = 0 ∞ x n n ! ( 1 + x ) α = 1 + α x + a ( a − 1 ) 2 ! x 2 + o ( x 2 ) \begin{aligned} \sin x&=x-\frac{x^{3}}{3 !}+o\left(x^{3}\right)\\ \arcsin x&=x+\frac{x^{3}}{3 !}+o\left(x^{3}\right)\\ \tan x&=x+\frac{x^{3}}{3}+o\left(x^{3}\right)\\ \arctan x&=x-\frac{x^{3}}{3}+o\left(x^{3}\right)\\ \cos x&=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+o\left(x^{4}\right)\\ \ln (1+x)&=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+o\left(x^{3}\right)\\ e^{x}&=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+o\left(x^{3}\right)=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}\\ (1+x)^{\alpha}&=1+\alpha x+\frac{a(a-1)}{2 !} x^{2}+o\left(x^{2}\right) \end{aligned} sinxarcsinxtanxarctanxcosxln(1+x)ex(1+x)α=x3!x3+o(x3)=x+3!x3+o(x3)=x+3x3+o(x3)=x3x3+o(x3)=12!x2+4!x4+o(x4)=x2x2+3x3+o(x3)=1+x+2!x2+3!x3+o(x3)=n=0n!xn=1+αx+2!a(a1)x2+o(x2)

Γ Γ Γ函数

Γ ( α ) ≜ ∫ 0 + ∞ x α − 1 e − x d x ⇒ { Γ ( α + 1 ) = α Γ ( α ) Γ ( n + 1 ) = n ! Γ ( 1 2 ) = π \Gamma(\alpha) \triangleq \int_{0}^{+\infty} x^{\alpha-1} e^{-x} \mathrm{d} x \Rightarrow\left\{\begin{array}{l}{\Gamma(\alpha+1)=\alpha \Gamma(\alpha)} \\ {\Gamma(n+1)=n !} \\ {\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}}\end{array}\right. Γ(α)0+xα1exdxΓ(α+1)=αΓ(α)Γ(n+1)=n!Γ(21)=π

其他

∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { n − 1 n ⋅ n − 3 n − 2 ⋯ ⋅ 2 3 ⋅ 1 , n 为 奇 数 且 大 于 1 n − 1 n ⋅ n − 3 n − 2 ⋯ ⋅ 1 2 ⋅ π 2 , n 为 正 偶 数 \int_{0}^{\frac{\pi}{2}} \sin ^{n} x \mathrm{d} x=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \mathrm{d} x=\left\{\begin{array}{ll}{\frac{n-1}{n} } {\cdot \frac{n-3}{n-2} \cdots \cdot \frac{2}{3} \cdot 1}, & n为奇数且大于1\\ {\frac{n-1}{n}} {\cdot \frac{n-3}{n-2} \cdots \cdot \frac{1}{2} \cdot \frac{\pi}{2}},&n为正偶数\end{array}\right. 02πsinnxdx=02πcosnxdx={ nn1n2n3321nn1n2n3212πn1n

极限

性质

极限存在性质
单调有界数列必存在极限
  1. { a n } ↗ , 有 上 界 \{a_n\}↗,有上界 { an}
  2. { a n } ↘ , 有 下 界 \{a_n\}↘,有下界 { an}
两个重要极限

lim ⁡ Δ → 0 sin ⁡ Δ Δ = 1 (1) \lim _ { \Delta \rightarrow 0 } \frac { \sin \Delta } { \Delta } = 1 \tag{1} Δ0limΔsinΔ=1(1)
lim ⁡ Δ → 0 ( 1 + △ ) 1 Δ = e (2) \lim _ { \Delta \rightarrow 0 } ( 1 + \triangle ) ^ { \frac { 1 } { \Delta } } = e \tag{2} Δ0lim(1+)Δ1=e(2)

左右极限

a Δ x − b 或 a Δ b − x , x → b 时 考 虑 左 右 极 限 a^\frac { \Delta } { x - b }或a^\frac { \Delta } { b-x }, x → b时考虑左右极限 axbΔabxΔ,xb

斜渐近线

lim ⁡ x → + ∞ f ( x ) x = lim ⁡ x → − ∞ f ( x ) x = k lim ⁡ x → + ∞ [ f ( x ) − k x ] = lim ⁡ x → + ∞ [ f ( x ) − k x ] = b ⇒ y = k x + b \begin{aligned} \lim _ { x \rightarrow + \infty } \frac { f ( x ) } {x}&=\lim _ { x \rightarrow - \infty } \frac { f ( x ) } { x } = k\\ \lim _ { x \rightarrow + \infty } [ f ( x ) - k x ] &= \lim _ { x \rightarrow + \infty } [ f ( x ) - k x ] = b \Rightarrow y = k x + b \end{aligned} x+limxf(x)x+lim[f(x)kx]=xlimxf(x)=k=x+lim[f(x)kx]=by=kx+b

其他

0 < x < π 2 ⇒ sin ⁡ x < x < tan ⁡ x 0 < x < \frac { \pi } { 2 } \Rightarrow \sin x < x < \tan x 0<x<2πsinx<x<tanx

微分

求导公式

三角

( tan ⁡ x ) ′ = sec ⁡ 2 x = 1 cos ⁡ 2 x ( cot ⁡ x ) ′ = csc ⁡ 2 x = 1 sin ⁡ 2 x ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x \begin{aligned} (\tan x)^{\prime}&=\sec ^{2} x=\frac{1}{\cos ^{2} x}\\ (\cot x)^{\prime}&=\csc ^{2} x=\frac{1}{\sin ^{2} x}\\ (\sec x)^{\prime}&=\sec x \tan x\\ (\csc x)^{\prime}&=-\csc x \cot x \end{aligned} (tanx)(cotx)(secx)(cscx)=sec2x=cos2x1=csc2x=sin2x1=secxtanx=cscxcotx

反三角

( arcsin ⁡ x ) ′ = 1 1 − x 2 ( arccos ⁡ x ) ′ = − 1 1 − x 2 ( arctan ⁡ x ) ′ = 1 1 + x 2 ( arccot ⁡ x ) ′ = − 1 1 + x 2 \begin{aligned} (\arcsin x)^{\prime}&=\frac{1}{\sqrt{1-x^{2}}}\\ (\arccos x)^{\prime}&=-\frac{1}{\sqrt{1-x^{2}}}\\ (\arctan x)^{\prime}&=\frac{1}{1+x^{2}}\\ (\operatorname{arccot} x)^{\prime}&=-\frac{1}{1+x^{2}} \end{aligned} (arcsinx)(arccosx)(arctanx)(arccotx)=1x2 1=1x2 1=1+x21=1+x21

多元函数极值

无条件极值
  1. 必要条件

z = f ( x , y ) 在 点 ( x 0 , y 0 ) { 一 阶 偏 导 数 存 在 取 极 值 ⇒ f x ′ ( x 0 . y 0 ) = 0 , f y ′ ( x 0 , y 0 ) = 0 z=f(x,y)在点(x_0,y_0)\begin{cases}一阶偏导数存在\\取极值 \end{cases}⇒f'_x(x_0.y_0)=0,f'_y(x_0,y_0)=0 z=f(x,y)(x0,y0){ fx(x0.y0)=0,fy(x0,y0)=0

  1. 充分条件

{ f x x ′ ′ ( x 0 , y 0 ) = A f x y ′ ′ ( x 0 , y 0 ) = B f y y ′ ′ ( x 0 , y 0 ) = C ⇒ Δ = B 2 − A C { < 0 ⇒ { A < 0 ⇒ 极 大 值 A > 0 ⇒ 极 小 值 > 0 非 极 值 = 0 方 法 失 效 \begin{cases} f''_{xx}(x_0,y_0)=A\\ f''_{xy}(x_0,y_0)=B\\f''_{yy}(x_0,y_0)=C \end{cases}⇒Δ=B^2-AC\begin{cases} <0⇒\begin{cases} A<0⇒极大值\\A>0⇒极小值 \end{cases}\\>0非极值\\=0 方法失效 \end{cases} fxx(x0,y0)=Afxy(x0,y0)=Bfyy(x0,y0)=CΔ=B2AC<0{ A<0A>0>0=0

条件极值

u = f ( x , y , z ) 在 { φ ( x , y , z ) = 0 ψ ( x , y , z ) = 0 下 的 极 值 u=f(x,y,z)在\begin{cases} φ(x,y,z)=0\\\psi(x,y,z)=0 \end{cases}下的极值 u=f(x,y,z){ φ(x,y,z)=0ψ(x,y,z)=0
F ( x , y , z , λ , μ ) = f ( x , y , z ) + λ φ ( x , y , z ) + μ ψ ( x , y , z ) F(x,y,z,λ,μ)=f(x,y,z)+λφ(x,y,z)+μ\psi(x,y,z) F(x,y,z,λ,μ)=f(x,y,z)+λφ(x,y,z)+μψ(x,y,z)
{ F x ′ = 0 F y ′ = 0 F z ′ = 0 F λ ′ = 0 F μ ′ = 0 \begin{cases} F'_x=0\\F'_y=0\\F'_z=0\\F'_λ=0\\F'_μ=0 \end{cases} Fx=0Fy=0Fz=0Fλ=0Fμ=0
求 出 候 选 值 , 最 大 的 为 极 大 值 , 最 小 的 为 极 小 值 求出候选值,最大的为极大值,最小的为极小值

方向导数

u = u ( x , y , z ) 在 点 P 0 ( x 0 , y 0 , z 0 ) 处 沿 l = ( l x , l y , l z ) 方 向 导 数 : u=u(x,y,z)在点P_0(x_0,y_0,z_0)处沿l=(l_x,l_y,l_z)方向导数: u=u(x,y,z)P0(x0,y0,z0)沿l=(lx,ly,lz)
∂ u ∂ l ∣ p 0 = u x ′ ( P 0 ) cos ⁡ α + u y ′ ( P 0 ) cos ⁡ β + u z ′ ( P 0 ) cos ⁡ γ cos ⁡ α = l x ∣ l ∣ , cos ⁡ β = l y ∣ l ∣ , cos ⁡ γ = l z ∣ l ∣ , \begin{aligned} \frac{∂u}{∂l}\Big|_{p_0}&=u'_x(P_0)\cos \alpha +u'_y(P_0)\cos \beta +u'_z(P_0)\cos γ\\ \cos α&=\frac{l_x}{|l|},\cos β=\frac{l_y}{|l|},\cos γ=\frac{l_z}{|l|}, \end{aligned} lup0cosα=ux(P0)cosα+uy(P0)cosβ+uz(P0)cosγ=llx,cosβ=lly,cosγ=llz,

  • 2
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值