【Python实战因果推断】36_双重差分7

目录

Effect Dynamics over Time


Effect Dynamics over Time

现在,您可能已经对经典 DID 有了相当深入的了解,这意味着您现在可以尝试偏离经典 DID,转而采用更天马行空的方式。一个稍微复杂一点的方法是,当你想把随时间变化的效应动态纳入其中时。如果你回过头来看一下显示干预结果演变的曲线图,就会发现干预组和对照组之间的差异并不会在干预发生后立即增大。相反,干预需要一段时间才能充分发挥效果。换句话说,干预效果不是立竿见影的。这种现象不仅在市场营销中相当常见,在对整个地域进行任何干预时也是如此。这也意味着你可能会低估最终的干预效果,因为你把干预效果尚未完全成熟的时期也计算在内了。

解决这个问题的一个简单方法是估计随时间变化的 ATT。如果你真的很聪明,你可以通过为干预后的每个时期创建虚拟变量来实现这一目的,但我最喜欢的获得随时间变化的效果的方法是使用一点蛮力:迭代所有时间段并运行 DID,就好像只有该时间段是干预后的时间段一样。

为了做到这一点,让我们创建一个函数,接收一个数据帧和一个日期,并将该日期作为干预后的时间段运行 DID:

 def did_date(df, date):
 df_date = (df
 .query("date==@date | post==0")
 .query("date <= @date")
 .assign(post = lambda d: (d["date"]==date).astype(int)))
 
 m = smf.ols(
 'downloads ~ I(treated*post) + C(city) + C(date)', data=df_date
 ).fit(cov_type='cluster', cov_kwds={'groups': df_date['city']})
 
 att = m.params["I(treated * post)"]
 ci = m.conf_int().loc["I(treated * post)"]
 
 return pd.DataFrame({"att": att, "ci_low": ci[0], "ci_up": ci[1]},
 index=[date])

首先,该函数只筛选干预前的时间段和通过的日期。然后,它会过滤等于或早于通过日期的日期。如果通过的日期是治疗后的日期,那么这个筛选是无害的。如果该日期是干预前的日期,则会删除其后的日期。这样,您甚至可以运行干预前的 DID。实际上,要做到这一点,您需要下一行代码,在这行代码中,函数会将干预后的时间段重新指定为指定的日期。现在,如果您传入一个干预前的日期,函数会假装它来自干预后的时期,这就像是时间维度上的安慰剂测试。最后,函数会估计一个 DID 模型,提取 ATT 及其置信区间。然后,它将所有数据存储在一个单行数据框中。

该函数适用于单个日期。要获得所有可能日期的效果,可以遍历这些日期,每次都能获得 DID 估计值。请记住,您需要跳过第一个日期,因为 DID 至少需要两个时间段才能运行。如果将所有结果存储在一个列表中,则可以在该列表上调用 pd.concat,将所有结果合并到一个数据框中:

 post_dates = sorted(mkt_data["date"].unique())[1:]
 atts = pd.concat([did_date(mkt_data, date)
 for date in post_dates])
 atts.head()

然后,您可以绘制随时间变化的效果图及其置信区间图。这幅图显示,干预发生后,效果并没有攀升。此外,如果剔除尚未完全成熟的早期阶段,ATT 似乎会更高一些。我还绘制了真实效应τ,这样你就能看到这种方法是如何很好地恢复真实效应的:

这幅图的干预前部分也值得大家注意。在此期间,所有估计效应都与零无异,这表明效应在干预前并没有发生。这有力地证明了 "无预期 "假设在这种情况下是成立的。

  • 6
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
贝叶斯因果推断是一种使用贝叶斯网络(Bayesian Network)进行因果关系推断的方法。贝叶斯网络是一种概率图模型,用于表示变量之间的依赖关系和因果关系。在贝叶斯网络中,节点表示变量,边表示变量之间的依赖关系。通过观察节点的状态,可以推断其他节点的状态。 在Python中,可以使用PyMC3库来构建贝叶斯网络模型。《Python贝叶斯分析》这本书从实际应用和编写程序的角度解释了贝叶斯统计的关键概念,并介绍了如何使用PyMC3来构建概率模型。这本书不要求读者具备生物学方面的基础知识,但需要读者具备使用Python编写程序的经验\[1\]。 贝叶斯因果推断的一个挑战是数据的结构与贝叶斯网络的独立性不一致。贝叶斯网络的推断算法旨在从概率中推断因果关系,与任何实验无关。因此,贝叶斯网络的推断是基于概率观察数据进行的。此外,贝叶斯网络的推断是从特定前提中得出一般性结论,与理论假设的表述无关。这是因为贝叶斯网络的推断是演绎的,而不是从因果假设的表述中得出的\[3\]。 因此,Python中的贝叶斯因果推断可以通过构建贝叶斯网络模型,并使用PyMC3库进行推断。这种方法可以帮助我们从观察数据中推断因果关系,并进行因果推断分析。 #### 引用[.reference_title] - *1* [Python贝叶斯分析 PDF 完整原版](https://blog.csdn.net/weixin_39850143/article/details/110996376)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [数学推导+纯Python实现机器学习算法12:贝叶斯网络](https://blog.csdn.net/weixin_37737254/article/details/102920363)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [贝叶斯因果网络_因果关系和贝叶斯网络](https://blog.csdn.net/weixin_26752765/article/details/108132740)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水木流年追梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值