tensorflow基础学习一

本文介绍了TensorFlow中的tf.constant()函数,用于创建常数张量,包括一维和二维张量的创建示例。同时,讨论了tf.matmul()函数进行矩阵乘法的操作,强调了输入张量的秩要求。文章还提到了执行代码时可能遇到的错误——未初始化变量,并给出了解决方案,建议使用tf.Session()和.run()方法进行操作。
摘要由CSDN通过智能技术生成

# -*- coding: UTF-8 -*-
import tensorflow as tf

#创建一个常量 op,产生一个 1*2 矩阵,这个op 作为一个节点
#加到默认图中
#
#构造器的返回值代表常量 op 的返回值

matrix1 = tf.constant([[3.,3.]])


# 创建另外一个常量 op, 产生一个 2x1 矩阵.
matrix2 = tf.constant([[2.],[2.]])

# 创建一个矩阵乘法 matmul op , 把 'matrix1' 和 'matrix2' 作为输入.
# 返回值 'product' 代表矩阵乘法的结果.
product = tf.matmul(matrix1,matrix2)

# 启动默认图.
# 调用 sess 的 'run()' 方法来执行矩阵乘法 op, 传入 'product' 作为该方法的参数. 
# 上面提到, 'product' 代表了矩阵乘法 op 的输出, 传入它是向方法表明, 我们希望取回
# 矩阵乘法 op 的输出.
#
# 整个执行过程是自动化的, 会话负责传递 op 所需的全部输入. op 通常是并发执行的.
# 
# 函数调用 'run(product)' 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op) 的执行.
#
# 返回值 'result' 是一个 numpy `ndarray` 对象.
with tf.Session() as sess:
  result = sess.run([product])
  print result

# -*-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值