离散数学:区间计数

这里写图片描述
  这题并不是自己做的,是网上找的答案改了一下,完美通过,这又是个烧脑的蓝桥原题,下边是解题思路
  一看是连续子序列求【i,j】区的问题就应该想到是前缀和的问题,sum[i] 表示是A1+A2+……+Ai 的和,那么对于区间[i,j]之间的和就是sum[j]-sum[i-1]。要求是k的倍数,则(sum[j]-sum[i-1])%k0 转化为 sum[j]%ksum[i-1]%k 所以在求前缀和的时候就可以进行求模运算,然后比如样例中得到的前缀和求完模后的结果为
1 1 0 0 1 那么下面就统计其中相同的数据,用数学角度分析的话 3个1 有3种组合
,2个0有一种组合,这是考虑的是相减的情况,然而本身其求模后为0也有两种情况,那么就是3+1+2=6 。数学角度转化就是转化成代码借用bk[]数组进行统计而已

#include<stdio.h>
typedef long ll;
const int maxn=100000;
ll bk[maxn]={0};
ll arr[maxn];

ll n,k;
int main()
{
	int i;
    scanf("%lld%lld",&n,&k);
    for(i=0;i<n;i++)
       scanf("%lld",&arr[i]);
    arr[0]%=k;
    ll sum=0;
    for(i=1;i<n;i++)
    {
       arr[i]=(arr[i]+arr[i-1])%k;
    }

    for(i=0;i<n;i++)
    {
        sum+=(bk[arr[i]]++);
    }
    printf("%lld\n",sum+bk [0]);
    return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值