Maple-IDS,一个自主发布的网络安全恶意流量检测数据集

一、数据集介绍

Maple-IDS数据集是一个网络入侵检测评估数据集,旨在增强异常基础入侵检测系统(IDS)和入侵预防系统(IPS)的性能和可靠性。随着网络空间安全领域攻击的日益复杂化,拥有一个可靠和最新的数据集对于测试和验证IDS和IPS解决方案至关重要。

数据集由东北林业大学网络安全实验室发布,欢迎引用和使用,完全免费!

实验室官网:东北林业大学网络安全实验室

 二、数据集发布背景

传统的评估数据集的攻击流量和利用方式,往往内容过时、流量多样性不足、攻击种类不足、特征不足,最重要的是 HTTPS/TLS 加密已经普及了。枫叶数据集提供了一个全面、现代的数据集来应对这些挑战,用于入侵检测研究。

三、Maple-IDS兼容使用CIC-IDS数据集的代码

如果你的代码是用CIC-IDS数据集训练或者编写的,那么可以直接更换到Maple-IDS数据集上。 Maple-IDS数据集与您之前的工作兼容。可以直接使用 CICFlowMeter 生成 CSV 文件! 无需重写代码或进行其他工作。

四、Maple-IDS数据集类别概览(包含内容)

内容:数据集包含最新的常见攻击,类似于真实世界的网络流量(PCAP/PCAPNG 格式)。
流量分析:使用 CICFlowMeter 进行的网络流量分析结果,标记基于时间戳、源和目标IP地址、端口、协议和攻击类型的流,存储在CSV文件中。
DDoS 攻击:数据集包括 DDoS 攻击,这些在真实世界的网络流量中很常见。并且由于随机内容,数据集更加多样化。GET、POST、HEAD 和 OPTIONS 是最常见的 HTTP 方法。
对每种服务细分的流量包和数据集 :我们对于每种服务(HTTP、HTTPS、SMTP、IMAP、POP3、FTP、SSH、RESTful API、gRPC、WASM)都提供了数据集。
多样的流量 :对于 ping 或者 HTTP,DDoS 的形式就多种多样,TCP,UDP, SYN 攻击,还有 ICMP 走私,我们的数据集都有覆盖到。
N-day 漏洞:数据集包括 n-day 漏洞,如 OpenSSL 中存在的著名漏洞 HeartBleed,日后打算囊括更多的 CVE 漏洞。

五、更多功能即将推出

DPDK、PF_RING 支持
如果您有任何问题或建议,请给我们反馈。

六、Maple-IDS数据集生成

我们通过模拟真实世界的网络流量中观察到的模式和模式来对流量进行配置。基于HTTP、HTTPS与SM3/4、GOST等,我们构建了用户的抽象行为。SSH、RESTful API、gRPC、WASM,这些现代+协议及其各种实现等,都为这个数据集构建了内容。

七、我们提供的处理工具

在创建数据集的过程中,我们使用了许多自己开发的工具。它们是开源的,可以免费下载。一般来说,工具的仓库中都有教程。见:https://github.com/maple-nefu/pcap2para

更多工具即将推出,请给我们一点时间,我们在用心做的更好!一起为恶意流量检测科研添砖加瓦!

八、数据集下载

请登录我们的实验室官网下载,东北林业大学网络安全实验室Maple Dateset站点:

https://maple.nefu.edu.cn/

九、联系我们

有任何问题或需要帮助,请随时与我们联系:
电子邮件:maple@nefu.edu.cn
GitHub:github.com/maple-nefu
QQ 群:631300176

十、欢迎引用和使用

请在使用我们的数据集时候请引用我们的官网发布的论文,谢谢!
————————————————

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
                        
原文链接:https://blog.csdn.net/catleelee/article/details/140004374

### 与交通相关的数据集下载站点 对于寻找与交通相关的数据集,可以参考以下资源: #### 数据集描述 存在多个专注于空中图像序列中的车辆和人员跟踪的数据集[^1]。这些数据集通常用于计算机视觉领域内的目标检测、跟踪以及行为分析研究。此外,在网络流量安全方面也有专门针对恶意流量的研究数据集,例如 Maple-IDS 提供的恶意流量检测数据集[^2]。 如果具体关注的是实时视频流处理或者本地文件的目标追踪,则可以通过加载预训练模型实现自动化流程管理。例如使用 Ultralytics 的 YOLOv8 工具包能够快速完成摄像头输入源上的对象识别任务[^3]。 另外还有来自阿姆斯特丹大学提供的多视角行人重识别挑战赛(Multi-view Pedestrian Re-ID Challenge)等相关资料可供查阅[^4]。 以下是几个推荐的 **Traffic Dataset 下载网站** 或项目链接: 1. [UA-MultiView](http://staff.science.uva.nl/~xirong/index.php?n=Main.Dataset): 这是一个由阿姆斯特丹大学维护的大规模城市监控场景下的多视图行人再识别数据库。 2. [VisDrone-Dataset](https://github.com/visdrone/VisDrone-Dataset): VisDrone 是一项国际无人机事件理解竞赛所使用的公开标注图片集合,涵盖了丰富的动态驾驶环境信息。 3. [KITTI Vision Benchmark Suite](http://www.cvlibs.net/datasets/kitti/): KITTI 数据集中包含了大量关于自动驾驶汽车感知系统的测试样本,非常适合用来开发先进的道路使用者监测算法。 4. [Cityscapes Dataset](https://www.cityscapes-dataset.com/): Cityscapes 主要面向语义分割应用而设计,但它同样也提供了详尽的城市街道场景下各种交通工具实例级标签信息。 ```python import requests def fetch_dataset_links(): datasets = [ ("UA-MultiView", "http://staff.science.uva.nl/~xirong/index.php?n=Main.Dataset"), ("VisDrone-Dataset", "https://github.com/visdrone/VisDrone-Dataset"), ("KITTI Vision Benchmark Suite", "http://www.cvlibs.net/datasets/kitti/"), ("Cityscapes Dataset", "https://www.cityscapes-dataset.com/") ] for name, url in datasets: try: response = requests.head(url) if response.status_code == 200: print(f"{name} is available at {url}") else: print(f"Could not reach {name}. Status code: {response.status_code}") except Exception as e: print(f"Error accessing {name}: {e}") fetch_dataset_links() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值