视觉分析createBackgroundSubtractorKNN去背景

在很多基础应用中背景检出都是一个非常重要的步骤。例如顾客统计,使用一个静态摄像头来记录进入和离开房间的人数,或者是交通摄像头,需要提取交通工具的信息等。在所有的这些例子中,首先要将人或车单独提取出来。技术上来说,我们需要从静止的背景中提取移动的前景。如果你有一张背景(仅有背景不含前景)图像,比如没有顾客的房间,没有交通工具的道路等,那就好办了。我们只需要在新的图像中减去背景就可以得到前景对象了。但是在大多数情况下,我们没有这样的(背景)图像,所以我们需要从我们有的图像中提取背景。如果图像中的交通工具还有影子的话,那这个工作就更难了,因为影子也在移动,仅仅使用减法会把影子也当成前景。真是一件很复杂的事情。为了实现这个目的科学家们已经提出了几种算法。OpenCV 中已经包含了其中三种比较容易使用的方法。我们一个一个学习一下

此算法结合了静态背景图像估计和每个像素的贝叶斯分割。这是 2012 年Andrew_B.Godbehere,Akihiro_Matsukawa 和 Ken_Goldberg 在文章中提出的。它使用前面很少的图像(默认为前 120 帧)进行背景建模。使用了概率前景估计算法(使用贝叶斯估计鉴定前景)。这是一种自适应的估计,新观察到的对象比旧的对象具有更高的权重,从而对光照变化产生适应。一些形态学操作如开运算闭运算等被用来除去不需要的噪音。在前几帧图像中你会得到一个黑色窗口。对结果进行形态学开运算对与去除噪声很有帮

 

import numpy as np
import cv2
cap = cv2.VideoCapture(0)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
fgbg = cv2.createBackgroundSubtractorKNN()

while(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值