【基础知识点】

文章探讨了计算机识别图像时从低层边缘特征逐渐组合成高层抽象特征的过程,强调深度学习在这一过程中的作用。深度学习通过组合低层特征形成高层表达,用于机器学习,尤其是图像识别领域的预测和决策。机器学习作为人工智能的一个子集,提供了一种让计算机从历史数据中学习并做出决策的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高层特征与低层特征
  • 高层的特征是低层特征的组合,从低层到高层的特征表达越来越抽象和概念化,也即越来越能表现语义或者意图。
  • 边缘特征 —–> 基本形状和目标的局部特征——>整个目标 这个过程其实和我们的常识是相吻合的,因为复杂的图形,往往就是由一些基本结构组合而成的。

计算机识别图像的过程
在这里插入图片描述

Deep Learning的出现
低层次特征 - - - - (组合) - - ->抽象的高层特征

深度学习,恰恰就是通过组合低层特征形成更加抽象的高层特征(或属性类别)。例如,在计算机视觉领域,深度学习算法从原始图像去学习得到一个低层次表达,例如边缘检测器、小波滤波器等,然后在这些低层次表达的基础上,通过线性或者非线性组合,来获得一个高层次的表达。

人工智能

人工智能是计算机科学的一个分支,研究计算机中智能行为的仿真。

机器学习

简单来说,机器学习就是通过算法,使得机器能从大量历史数据中学习规律,从而对新的样本做智能识别或对未来做预测。

基本上,机器学习是人工智能的一个子集;更为具体地说,它只是一种实现AI的技术,一种训练算法的模型,这种算法使得计算机能够学习如何做出决策。

深度学习

深度学习是一种机器学习方法 , 它允许我们训练人工智能来预测输出,给定一组输入(指传入或传出计算机的信息)。监督学习和非监督学习都可以用来训练人工智能。

END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值