二项式定理

视频教程地址

上学的时候学过完全平方公式
( a + b ) 2 (a+b)^2 a+b2 = a 2 + 2 a b + b 2 a^2 +2ab + b^2 a2+2ab+b2
因为 ( a + b ) 2 (a+b)^2 a+b2 = (a+b)(a+b) = aa+ab+ba+bb = a 2 + 2 a b + b 2 a^2 +2ab + b^2 a2+2ab+b2


那么如果是 ( a + b ) n (a+b)^n a+bn 应该怎么计算呢?

再看两个例子:
例1:
( a + b ) 3 (a+b)^3 a+b3
该式 = (a+b)(a+b)(a+b) = aaa+aab+aba+abb+baa+bab+bba+bbb
该式 结果中含有的项 只有 a 3 、 a 2 b 、 a b 2 、 b 3 a^3 、a^2b 、ab^2、b^3 a3a2bab2b3,接着需要合并同类项
该式= a ³ + 3 a ² b + 3 a b ² + b ³ a³+3a²b+3ab²+b³ a³+3a²b+3ab²+b³

由此可见乘的结果等于原式 每个括号里分别取出一个 a || b,再把他们相乘。
aaa等于三个括号里都选了a, aab等于前两个括号里选了a后一个括号里选了b, aba等于中间括号选了b其余选了a.

例2:
( a + b ) 4 (a+b)^4 a+b4 = (a+b)(a+b)(a+b)(a+b )从每个括号中选一个a||b相乘
该式展开后含有的项只有 a 4 、 a 3 b 、 a 2 b 2 、 a b 3 、 b 4 a^4、a^3b、a^2b^2、ab^3、b^4 a4a3ba2b2ab3b4
接下来需要求每一项的系数    ? a 4 + ? a 3 b + ? a 2 b 2 + ? a b 3 + ? b 4 ?a^4+?a^3b+?a^2b^2+?ab^3+?b^4 ?a4+?a3b+?a2b2+?ab3+?b4

? a 3 b ?a^3b ?a3b 举例,问 a 3 b a^3b a3b的系数其实就是问这种组合一共有几种选法。

从 (a+b)(a+b)(a+b)(a+b ) 中选三个选a 。选法一共有 C 4 3 C^{3}_{4} C43种,
C 4 3 C^{3}_{4} C43 = 4 ! 3 ! ( 4 − 3 ) ! \frac{4!}{3!(4-3)!} 3!(43)!4! = 4
4种选法分别是 aaab,aaba,abaa,baaa。

从 (a+b)(a+b)(a+b)(a+b ) 中选三个选a 等同于从中选一个b= C 4 1 C^{1}_{4} C41 = 4 ! 1 ! ( 4 − 1 ) ! \frac{4!}{1!(4-1)!} 1!(41)!4! = 4

所以 a 4 a^4 a4 = 选了0个b = C 4 0 C^{0}_{4} C40。, a 2 b 2 a^2b^2 a2b2 同于从中选两个b = C 4 2 C^{2}_{4} C42
a b 3 ab^3 ab3同于从中选三个b = C 4 3 C^{3}_{4} C43 b 4 b^4 b4同于从中选四个b = C 4 4 C^{4}_{4} C44

( a + b ) 4 (a+b)^4 a+b4 = C 4 0 a 4 + C 4 1 a 3 b + C 4 2 a 2 b 2 + C 4 3 a b 3 + C 4 4 b 4 C^{0}_{4}a^4 +C^{1}_{4}a^3b+C^{2}_{4}a^2b^2+C^{3}_{4}ab^3+C^{4}_{4}b^4 C40a4+C41a3b+C42a2b2+C43ab3+C44b4
= a 4 + 4 a 3 b + 6 a 2 b 2 + 4 a b 3 + b 4 a^4+4a^3b+6a^2b^2+4ab^3+b^4 a4+4a3b+6a2b2+4ab3+b4

回到原题:
( a + b ) n (a+b)^n a+bn 展开式的项 为:
a n + a n − 1 b + a n − 2 b 2 + . . . . . . b n a^n+a^{n-1}b+a^{n-2}b^2 +......b^n an+an1b+an2b2+......bn
以选b的组合来看:
对应系数: C n 0 、 C n 1 、 C n 2 . . . . . C n n C^{0}_{n}、C^{1}_{n}、C^{2}_{n}.....C^{n}_{n} Cn0Cn1Cn2.....Cnn

将两者结合得到二项式定理:

( a + b ) n = C n 0 a n + C n 1 a n − 1 b + C n 2 a n − 2 b 2 + . . . . + C n n b n (a+b)^n = C^{0}_{n}a^n + C^{1}_{n}a^{n-1}b+C^{2}_{n}a^{n-2}b^2+....+C^{n}_{n}b^n (a+b)n=Cn0an+Cn1an1b+Cn2an2b2+....+Cnnbn


( a + b ) n (a+b)^n (a+b)n展开后的项有 n+1 项。
在这里插入图片描述

数 列 C n 0 a n + C n 1 a n − 1 b + C n 2 a n − 2 b 2 + . . . . + C n n b n = C n 0 a n b 0 + C n 1 a n − 1 b + C n 2 a n − 2 b 2 + . . . . + C n n a 0 b n 数列C^{0}_{n}a^n + C^{1}_{n}a^{n-1}b+C^{2}_{n}a^{n-2}b^2+....+C^{n}_{n}b^n =C^{0}_{n}a^nb^0 + C^{1}_{n}a^{n-1}b+C^{2}_{n}a^{n-2}b^2+....+C^{n}_{n}a^0b^n Cn0an+Cn1an1b+Cn2an2b2+....+Cnnbn=Cn0anb0+Cn1an1b+Cn2an2b2+....+Cnna0bn

a的次数 = n-b的次数
二项式系数= C n b 的 次 数 C^{b的次数}_{n} Cnb ,用 C n r ( r = 1 , 2 , 3 , 4 , 5... n ) C^{r}_{n}(r=1,2,3,4,5...n) Cnr(r=1,2,3,4,5...n) 表示。注意 C n r ≠ 系 数 C^{r}_{n} \ne 系数 Cnr=
所以任意一项 = C n r a n − r b r C^{r}_{n}a^{n-r}b^r Cnranrbr

百度文库描述文档点击这里

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值