设: m = l n a , n = l n b m=lna,n=lnb m=lna,n=lnb,则:
a
=
e
m
,
b
=
e
n
a=e^m,b=e^n
a=em,b=en
a
×
b
=
(
e
m
)
×
(
e
n
)
=
e
m
+
n
a×b=(e^m)×(e^n)=e^{m+n}
a×b=(em)×(en)=em+n
则:
l
n
(
a
×
b
)
=
m
+
n
=
l
n
a
+
l
n
b
ln(a×b)=m+n=lna+lnb
ln(a×b)=m+n=lna+lnb
即:
l
n
a
+
l
n
b
=
l
n
(
a
b
)
lna+lnb=ln(ab)
lna+lnb=ln(ab)
另外,
a
÷
b
=
e
m
÷
e
n
=
e
m
-
n
a÷b=e^m÷e^n=e^{m-n}
a÷b=em÷en=em-n
则:
l
n
(
a
÷
b
)
=
m
-
n
=
l
n
a
-
l
n
b
ln(a÷b)=m-n=lna-lnb
ln(a÷b)=m-n=lna-lnb
即: l n a - l n b = l n ( a b ) lna-lnb=ln(\frac{a}{b}) lna-lnb=ln(ba)