机器学习——重新认识线性回归模型

本文详细探讨了线性回归模型的基础知识,包括均方误差、凸函数和极大似然估计。介绍了线性回归的目标是通过最小化均方误差来找到最佳模型,并讨论了多元线性回归和矩阵微分。同时,文章还涵盖了对数几率回归和线性判别分析,阐述了它们在分类任务中的应用和背后的数学原理。
摘要由CSDN通过智能技术生成

1. 线性回归模型中所需数学知识储备

1.1 均方误差

  • 方差是用来描述真实值偏离均值的程度
  • 均方误差是误差平方和的平均数,用来描述测量值与真实值的误差程度

1.2 凸函数

此处的凸函数强调的是来自最优化理论中的概念,不同于高数书中的凸函数的概念(两者表示的东西是相反的)。
机器学习中的凸函数概念:对区间[a,b]上定义的函数 f,若它对区间中任意两点X1,X2均有 f((X1+X2)/2) <= ( f(X1) + f(X2) ) / 2 ,则称 f 为区间[a,b]上的凸函数。
在这里插入图片描述
在这里插入图片描述

凸函数的作用是当求解关于w的最优解时,令关于w的一阶导数为0即可求得。
凸函数的证明,即函数所在区间上的二阶导数为非负函数便是凸函数。

1.3 极大似然估计

极大似然估计,就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值。图示为极大似然估计函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值