1. 线性回归模型中所需数学知识储备
1.1 均方误差
- 方差是用来描述真实值偏离均值的程度
- 均方误差是误差平方和的平均数,用来描述测量值与真实值的误差程度
1.2 凸函数
此处的凸函数强调的是来自最优化理论中的概念,不同于高数书中的凸函数的概念(两者表示的东西是相反的)。
机器学习中的凸函数概念:对区间[a,b]上定义的函数 f,若它对区间中任意两点X1,X2均有 f((X1+X2)/2) <= ( f(X1) + f(X2) ) / 2 ,则称 f 为区间[a,b]上的凸函数。
凸函数的作用是当求解关于w的最优解时,令关于w的一阶导数为0即可求得。
凸函数的证明,即函数所在区间上的二阶导数为非负函数便是凸函数。
1.3 极大似然估计
极大似然估计,就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值。图示为极大似然估计函数