解题报告:HDU_6134:Battlestation Operational (莫比乌斯反演)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_32570675/article/details/77372646

题目链接

题意:



思路:

本来出题人想考的不是反演,但是用反演做意外的简单。。

原式:

做反演:


易知:    ( D( x ) 为 x 的因子个数

那么可在内预处理出 g() ,再在线性时间内得到g()的前缀和

每次查询的复杂度,总复杂度

代码:

#include<bits/stdc++.h>

const int N = 1e6+10;
const long long mod = 1e9+7;
using namespace std;

vector<int>pr;
int mu[N],D[N],F[N],fro[N];
bool Np[N];

void init(){
   for(int i=1;i<N;i++){
      for(int j=i;j<N;j+=i){
         D[j]++;
      }F[i] = F[i-1] + 1 + D[i-1] ;
      if(F[i]>=mod)F[i]-=mod;
      fro[i] = fro[i-1] + F[i];
      if(fro[i]>=mod)fro[i] -= mod;
   }
   mu[1] = 1;
   for(int i=2;i<N;i++){
      if(!Np[i]){
         mu[i] = -1;
         pr.emplace_back(i);
      }for(int j=0,k=pr[0]*i;k<N;k=pr[++j]*i){
         Np[k] = true;
         if(i%pr[j]==0){
            mu[k]=0;
            break;
         }mu[k] = -mu[i];
      }mu[i] += mu[i-1];
   }
}


inline long long work(int n){
   long long res = 0;
   for(int d=1,lastd;d<=n;d=lastd+1){
      lastd = n / (n/d);
      res = (res + 1LL * ( mu[lastd] - mu[d-1] ) * fro[n/d] ) % mod;
   }if(res<0)res+=mod;
   return res;
}

int main()
{
   init();
   int n;
   while(scanf("%d",&n)==1){
      printf("%I64d\n",work(n));
   }return 0;
}




阅读更多

没有更多推荐了,返回首页