2019-8-29 Medical image papers in CVPR

Medical image paper in CVPR 2019

医疗图像分割的Challenge主要有:

  • 医疗图像的标注需要专业的医学知识,且像素级别的标注费时费力,所以缺少像素级别标注好的医疗图像。
    – 半监督,弱监督 …
    – Data augmentation (合成有标注的图像)
  • 在三维的医疗图像(CT, MRI)或者超高清的二维医疗图像上跑深度网络会超过GPU显存的限制
    – 对全局的图像降采样 / 切局部的patch输入神经网络 / 结合全局和局部的信息
    – 多尺度提取特征
  • 分割效果不好
    – 可以修改loss function,一般的loss function采用cross entropy loss 或者 Dice loss,他们都没有考虑几何信息,所以提出了边缘长度和区域信息相结合的loss function。

1 Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-High Resolution Images1

Task:

分割超高清图像(无法全部送进网络训练)

Method:

把原超高清图像downsample一支,crop patch一支,分别输入结构相同的网络训练,两个网络对应的每一层的feature map双向共享。由Figure 5,可以看出特征图需要转换到同一个语义信息下再channel wise拼接到一起。最后一层的global和local之间的feature map要经过regularization,因为local的网络倾向于预测出过于精细的纹理(groundtruth里不存在),所以加了一个特征之间差的二范数,只更新local branch,目的是让local branch训练得慢一些。
在这里插入图片描述
在这里插入图片描述
为了解决前后背景体素个数不均衡的问题,先用global branch粗分割出前景的区域,然后只crop出这个前景,作为local branch的输入,特征共享也只在这个前景区域。
在这里插入图片描述

Result

越左上角,越省显存,准确性更高,红点为该论文的网络。
在这里插入图片描述

2 Deep Q learning driven CT pancreas segmentation with geometry-aware U-Net2

Task: 在三维CT数据中分割胰腺

Method:

在三个方向切片然后用DQN网络学出如何在2D图像上定位胰腺,只把胰腺区域crop出来并送入U-Net做分割,把结果拼起来,并对三个结果做投票,得到最终的分割结果。
在这里插入图片描述

DQN Network

定义了10个action(5个缩放,4个平移,1个终止),如下图所示。
在这里插入图片描述

DQN网络的输入(state):2D的CT slice。
DQN网络的输出(Q value):每个action对应的未来总收益之和。
action就选DQN网络输出的最大的value对应的action。
在这里插入图片描述
reward定义:
在这里插入图片描述
DQN网络的定位过程实例:
在这里插入图片描述

3 Adaptive Weighting Multi-field-of-view CNN for semantic segmentation in pathology [^3]

Task: Segment lesion in pathology images

在这里插入图片描述

Method: 用三个CNN网络学习三个尺度的特征,然后ensemble结果,学习这个投票的权重

在这里插入图片描述
Pretrain好 C N N 1 , C N N 2 , C N N 3 CNN_1,CNN_2,CNN_3 CNN1,CNN2,CNN3之后,把三个尺度的patch输入到Weighting CNN中训练,权重 W 1 , w 2 , w 3 W_1,w_2,w_3 W1,w2,w3是三个expert CNN网络的分割结果的Dice指标。训练好weighting CNN后,fix住这个网络,然后训练虚线框里的四个网络 F E 1 , F E 2 , f E 3 , f A F_{E_1},F_{E_2},f_{E_3},f_A FE1,FE2,fE3,fA,权重用此时weighting CNN预测出的结果,(这时候finetune F E 1 , F E 2 , f E 3 F_{E_1},F_{E_2},f_{E_3} FE1,FE2,fE3会让三个网络更专业化,即四个维恩图并更大)。然后再交替训练 f W f_W fW F E 1 , F E 2 , f E 3 , f A F_{E_1},F_{E_2},f_{E_3},f_A FE1,FE2,fE3,fA
在这里插入图片描述

4 Collaborative learning of semi-supervised segmentation and classification for medical images 3

Task: 有~ × 1 0 1 \times 10^1 ×101 张像素级标注的图像 X P X^P XP,~ × 1 0 4 \times10^4 ×104张图像级标注的图像 X I X^I XI。利用大量没有pixel level标注的图像做半监督的分割。

在这里插入图片描述
先用 X P X^P XPpretrain分割网络(下图黄色部分的网络),用 X I X^I XIpretrain分类网络(下下图蓝色网络)。然后把大量的 X I X^I XI输入到分割网络中生成一个粗略的预测图。把 X P X^P XPconcate其分割结果 m a s k l P ^ \widehat{mask_l^P} masklP (4 channel)和 X I X^I XIconcate其分割结果 m a s k l I ^ \widehat{mask_l^I} masklI (4 channel)输入到一个判别器中,因为判别器会越区分越准,所以生成器会使生成的image mask supervised by image-level annotated data越来越逼近supervised by pixel-level annotated data。
分割模型的loss function: L C E ( m a s k l P ^ , G T l P ) + L C E ( m a s k l I ^ , G T l I ~ ) + L a d v L_{CE}(\widehat{mask_l^P},GT_l^P)+L_{CE}(\widehat{mask_l^I},\tilde{GT_l^I})+L_{adv} LCE(masklP ,GTlP)+LCE(masklI ,GTlI~)+Ladv

在这里插入图片描述
X I X^I XI X I X^I XI的初步分割mask m a s k l I ^ \widehat{mask_l^I} masklI 会被输入到下图的网络学习到lesion masks G T l I ~ \tilde{GT_l^I} GTlI~,并传回到分割网络,作为分割结果的伪groundtruth。并且pseudo lesion mask会帮助finetune分类网络,分类网络又会帮助refine pseudo lesion masks。所以把分割和分类问题放到一个端到端的网络里可以互相提高。
在这里插入图片描述

5 Learning active contour models for medical image segmentation 4

Task: 保持分割结果的形状

Method: 将轮廓长度和轮廓内部和外部的能量约束整合进loss function在这里插入图片描述

在这里插入图片描述


  1. Chen W, Jiang Z, Wang Z, et al. Collaborative global-local networks for memory-efficient segmentation of ultra-high resolution images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 8924-8933. ↩︎

  2. Tokunaga H, Teramoto Y, Yoshizawa A, et al. Adaptive Weighting Multi-Field-of-View CNN for Semantic Segmentation in Pathology[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 12597-12606. ↩︎

  3. Zhou Y, He X, Huang L, et al. Collaborative Learning of Semi-Supervised Segmentation and Classification for Medical Images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 2079-2088. ↩︎

  4. Chen X, Williams B M, Vallabhaneni S R, et al. Learning Active Contour Models for Medical Image Segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 11632-11640. ↩︎

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值