论文阅读总结(九):Hidden physics models: Machine learning of nonlinear partial differential equations

该论文探讨在小样本情况下,如何利用机器学习来学习非线性偏微分方程的未知参数。文章介绍了模型设定,包括一维Burger方程为例的参数化非线性偏微分方程,并提出了基于高斯过程的隐物理模型,用于参数学习。实验结果显示,即使使用少量数据点,模型也能在Burger方程和KdV方程中表现出良好的性能,这表明模型成功地编码了物理定律。
摘要由CSDN通过智能技术生成
本文解决的问题

在小样本下给定一定形式的偏微分方程,学习偏微分方程未知的参数。

模型

我们考虑参数化的非线性偏微分方程的一般形式:
h t + N x λ h = 0 , x ∈ Ω , t ∈ [ 0 , T ] (1) h_t+N_x^{\lambda}h=0, x\in\Omega, t\in[0, T]\tag{1} ht+Nxλh=0,xΩ,t[0,T](1)
h ( t , x ) h(t, x) h(t,x)表示隐式解, N x λ N_x^\lambda Nxλ是以 λ \lambda λ为参数的算子。 Ω \Omega Ω D D D维空间 R D R^D RD上的子集。以一维Burger方程为例,对应的 N x λ h N_x^\lambda h Nxλh N x λ h = λ 1 h h x − λ 2 h x x , λ = ( λ 1 , λ 2 ) N_x^\lambda h=\lambda_1hh_x-\lambda_2h_{xx}, \lambda=(\lambda_1,\lambda_2) Nxλh=λ1hhxλ2hxx,λ=(λ1,λ2)
下标代表对时间和空间坐标相应的偏导数。
我们主要解决的问题分为两类:

  1. 第一类为给定固定的参数 λ \lambda λ的某类方程我们如何求出方程的解析解。
  2. 第二类为给定某类方程但 λ \lambda λ的参数未知,我们如何得到参数 λ \lambda λ,即找偏微分方程。

假定在时间 t n − 1 和 t n t^{n-1}和t^n tn1tn分别采样得到的样本为 { x n − 1 , h n − 1 } \{x^{n-1}, h^{n-1}\} { xn1,hn1} { x n , h n } \{x^n,h^n\} { xn,hn} Δ t = t n − t n − 1 \Delta t=t^n-t^{n-1} Δt=tntn1
假设 Δ t \Delta t Δt足够小以至于我们可以对 ( 1 ) 式 (1)式 (1)应用反向欧拉时间步长方案获得离散版本的方程:
h n + Δ t N x λ h n = h n − 1 (2) h^n+\Delta tN_x^\lambda h^n=h^{n-1}\tag{2} hn+ΔtNxλhn=hn1(2)
h n = h ( t n , x

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值