L1自适应控制的理论推导过程:
假设需要控制的未知非线性系统为:
ẋ = f(x) + B(x)u
其中x是状态变量,u是控制量,f和B是未知的非线性函数。
-
定义状态误差x̃ = x - xd,其中xd是所需的参考状态。
-
构建Lyapunov函数:
V = x̃T P x̃
其中P是正定矩阵。
- 对Lyapunov函数求导可得:
V̇ = x̃T (PA + ATP)x̃ + 2x̃T PB(u + uad)
其中A = ∂f/∂x,uad是自适应控制律,待设计。
- 设计自适应控制律:
uad = -B̂T(x)Px̃
其中B̂是B的估计值。
- 将uad代入Lyapunov函数derivative,并将B̂与B的估计误差定义为B̃,则有:
V̇ = -x̃T Qx̃ + 2x̃T PB̃B̂T Px̃ ≤ -ǁx̃ǁ2
其中Q是正定矩阵。
- 当B̂趋于B时,V̇是非正的,状态误差x̃会指数收敛,系统稳定。
基于投影算子的自适应控制律
-
在自适应控制律中,使用投影算子对参数进行在线调整,使参数值保持在一个预定区域内。
-
投影算子可以防止参数发散,从而提高控制系统的鲁棒性。
-
常见的投影算子有三角投影算子、饱和投影算子、死区投影算子等。
-
投影算子把参数调整后的值映射到约束集合上,使之满足预定的约束条件。
-
投影算子不改变参数调整方向,只限制其调整范围,所以不影响参数收敛性。
-
基于投影算子的自适应控制律既能保证闭环系统的稳定性,又可以防止参数发散。
-
该方法应用于各类自适应控制中,如模型参考自适应控制、极点置踪自适应控制等。
-
相比直接自适应控制,该方法的鲁棒性更好,使控制系统更加实用。
-
理论上使用Lyapunov方法来证明该方法的稳定性。
常见的投影算子
1. 三角投影算子
如果参数θ需要被限制在区间[θmin,θmax]内,三角投影算子定义为:
Proj(θ) = min(max(θmin, θ), θmax)
它将θ投影到约束区间的端点上。
2. 饱和投影算子
饱和投影算子用于将参数限制在一个开区间(a,b)内,定义为:
Proj(θ) = a, θ ≤ a
θ, a < θ < b
b, θ ≥ b
3. 死区投影算子
死区投影算子将参数限制在一个指定范围内,超出的部分设置为0,定义为:
Proj(θ) = 0, |θ| ≥ d
θ, |θ| < d
4. 自normal化投影算子
用于向量参数,保证参数向量的norm为1,定义为:
Proj(θ) = θ / ||θ||
5. 偏差投影算子
用于系统有某些已知固有参数,投影使参数偏离其固有值,定义为:
Proj(θ) = sat(θ - θ*, δ) + θ*