关于L1自适应的一些学习

L1自适应控制的理论推导过程:

假设需要控制的未知非线性系统为:

ẋ = f(x) + B(x)u

其中x是状态变量,u是控制量,f和B是未知的非线性函数。

  1. 定义状态误差x̃ = x - xd,其中xd是所需的参考状态。

  2. 构建Lyapunov函数:

V = x̃T P x̃

其中P是正定矩阵。

  1. 对Lyapunov函数求导可得:

V̇ = x̃T (PA + ATP)x̃ + 2x̃T PB(u + uad)

其中A = ∂f/∂x,uad是自适应控制律,待设计。

  1. 设计自适应控制律:

uad = -B̂T(x)Px̃

其中B̂是B的估计值。

  1. 将uad代入Lyapunov函数derivative,并将B̂与B的估计误差定义为B̃,则有:

V̇ = -x̃T Qx̃ + 2x̃T PB̃B̂T Px̃ ≤ -ǁx̃ǁ2

其中Q是正定矩阵。

  1. 当B̂趋于B时,V̇是非正的,状态误差x̃会指数收敛,系统稳定。

基于投影算子的自适应控制律

  1. 在自适应控制律中,使用投影算子对参数进行在线调整,使参数值保持在一个预定区域内。

  2. 投影算子可以防止参数发散,从而提高控制系统的鲁棒性。

  3. 常见的投影算子有三角投影算子、饱和投影算子、死区投影算子等。

  4. 投影算子把参数调整后的值映射到约束集合上,使之满足预定的约束条件。

  5. 投影算子不改变参数调整方向,只限制其调整范围,所以不影响参数收敛性。

  6. 基于投影算子的自适应控制律既能保证闭环系统的稳定性,又可以防止参数发散。

  7. 该方法应用于各类自适应控制中,如模型参考自适应控制、极点置踪自适应控制等。

  8. 相比直接自适应控制,该方法的鲁棒性更好,使控制系统更加实用。

  9. 理论上使用Lyapunov方法来证明该方法的稳定性。

常见的投影算子

1. 三角投影算子

如果参数θ需要被限制在区间[θmin,θmax]内,三角投影算子定义为:

Proj(θ) = min(max(θmin, θ), θmax)

它将θ投影到约束区间的端点上。

2. 饱和投影算子

饱和投影算子用于将参数限制在一个开区间(a,b)内,定义为:

Proj(θ) = a, θ ≤ a
            θ, a < θ < b
            b, θ ≥ b

3. 死区投影算子

死区投影算子将参数限制在一个指定范围内,超出的部分设置为0,定义为:

Proj(θ) = 0, |θ| ≥ d
            θ, |θ| < d

4. 自normal化投影算子

用于向量参数,保证参数向量的norm为1,定义为:

Proj(θ) = θ / ||θ||

5. 偏差投影算子

用于系统有某些已知固有参数,投影使参数偏离其固有值,定义为:

Proj(θ) = sat(θ - θ*, δ) + θ*

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值