关于L1自适应的一些学习

L1自适应控制的理论推导过程:

假设需要控制的未知非线性系统为:

ẋ = f(x) + B(x)u

其中x是状态变量,u是控制量,f和B是未知的非线性函数。

  1. 定义状态误差x̃ = x - xd,其中xd是所需的参考状态。

  2. 构建Lyapunov函数:

V = x̃T P x̃

其中P是正定矩阵。

  1. 对Lyapunov函数求导可得:

V̇ = x̃T (PA + ATP)x̃ + 2x̃T PB(u + uad)

其中A = ∂f/∂x,uad是自适应控制律,待设计。

  1. 设计自适应控制律:

uad = -B̂T(x)Px̃

其中B̂是B的估计值。

  1. 将uad代入Lyapunov函数derivative,并将B̂与B的估计误差定义为B̃,则有:

V̇ = -x̃T Qx̃ + 2x̃T PB̃B̂T Px̃ ≤ -ǁx̃ǁ2

其中Q是正定矩阵。

  1. 当B̂趋于B时,V̇是非正的,状态误差x̃会指数收敛,系统稳定。

基于投影算子的自适应控制律

  1. 在自适应控制律中,使用投影算子对参数进行在线调整,使参数值保持在一个预定区域内。

  2. 投影算子可以防止参数发散,从而提高控制系统的鲁棒性。

  3. 常见的投影算子有三角投影算子、饱和投影算子、死区投影算子等。

  4. 投影算子把参数调整后的值映射到约束集合上,使之满足预定的约束条件。

  5. 投影算子不改变参数调整方向,只限制其调整范围,所以不影响参数收敛性。

  6. 基于投影算子的自适应控制律既能保证闭环系统的稳定性,又可以防止参数发散。

  7. 该方法应用于各类自适应控制中,如模型参考自适应控制、极点置踪自适应控制等。

  8. 相比直接自适应控制,该方法的鲁棒性更好,使控制系统更加实用。

  9. 理论上使用Lyapunov方法来证明该方法的稳定性。

常见的投影算子

1. 三角投影算子

如果参数θ需要被限制在区间[θmin,θmax]内,三角投影算子定义为:

Proj(θ) = min(max(θmin, θ), θmax)

它将θ投影到约束区间的端点上。

2. 饱和投影算子

饱和投影算子用于将参数限制在一个开区间(a,b)内,定义为:

Proj(θ) = a, θ ≤ a
            θ, a < θ < b
            b, θ ≥ b

3. 死区投影算子

死区投影算子将参数限制在一个指定范围内,超出的部分设置为0,定义为:

Proj(θ) = 0, |θ| ≥ d
            θ, |θ| < d

4. 自normal化投影算子

用于向量参数,保证参数向量的norm为1,定义为:

Proj(θ) = θ / ||θ||

5. 偏差投影算子

用于系统有某些已知固有参数,投影使参数偏离其固有值,定义为:

Proj(θ) = sat(θ - θ*, δ) + θ*

### 参数投影算法概述 参数投影算法是一种用于改进自适应控制系统中参数估计的方法。其核心思想是在更新参数的过程中引入约束条件,使得估计的参数始终满足某些特定的要求(如稳定性或物理意义上的合理性)。这种方法可以有效防止参数估计偏离合理范围,从而提高系统的鲁棒性和收敛速度。 在实际应用中,参数投影通常与梯度下降或其他优化方法结合使用。具体来说,在每一步迭代过程中,先按照常规方式计算参数增量,然后再将新得到的参数映射到一个预定义的有效区域内[^1]。 以下是关于参数投影算法的具体实现原理及其示例: --- ### 参数投影算法的实现原理 #### 1. 数学描述 假设当前待估参数为 \(\theta\),目标是最小化某个代价函数 \(J(\theta)\),其中 \(\theta\) 需要满足一定的约束条件 \(g(\theta) = 0\) 或 \(h(\theta) \leq 0\)。为了确保参数始终保持在合理的范围内,可以在每次更新后执行如下操作: \[ \hat{\theta}_{k+1} = P_{\Omega}[\tilde{\theta}_{k+1}] \] 这里,\(P_{\Omega}\) 表示将任意点投影至可行域 \(\Omega\) 上的操作符,而 \(\tilde{\theta}_{k+1}\) 是未经过投影处理的新参数值。 #### 2. 投影机制 对于简单的线性约束情况,比如要求所有参数均为正实数,则可以通过逐项比较来完成投影: ```matlab function theta_projected = project_to_positive(theta_unprojected) theta_projected = max(theta_unprojected, 0); end ``` 更复杂的情形下可能涉及二次规划求解器或者其他数值技术来进行精确投影[^2]。 --- ### 示例代码:基于MATLAB的简单参数投影实现 下面给出一段伪代码展示如何利用上述概念构建一个带有限制条件的自适应滤波器训练流程: ```matlab % 初始化变量 N = 64; % 滤波器长度 mu = 0.01; % 学习率/步长因子 w = randn(N, 1); % 初始权重向量 d = ... ; % 所需响应序列 x = ... ; % 输入数据流 for k = N:length(d)-1 % 提取最新的一组样本作为输入矢量 u = x(k:-1:k-N+1); % 计算预测误差 e = d(k) - dot(w', u); % 使用标准LMS规则调整权值 dw = mu * e * u; % 应用投影限制保持各分量非负 w_new = w + dw; w = max(w_new, zeros(size(w))); end ``` 此脚本片段演示了一个典型的例子——强制保证最终获得的所有系数都大于等于零。当然也可以替换其他形式更加复杂的边界设定逻辑以匹配不同应用场景下的需求特点[^3]。 --- ### CAMShift中的连续自适应跟踪算法简介 虽然主要讨论的是参数投影算法,但值得一提的是,在计算机视觉领域也有类似的思路应用于动态场景分析任务之中。例如 OpenCV库里的CAMShift 方法便采用了某种意义上的“连续自适应”策略去追踪移动物体的位置变化轨迹[^4]: - 它首先会在初始时刻手动指定感兴趣区域(ROI),并据此建立起颜色分布统计模型; - 接着随着后续每一帧画面的到来不断重新评估该模型的最佳拟合位置直至结束整个过程为止。 尽管两者之间存在着显著差异,但从广义角度来看它们其实共享了一些共同理念即都是试图通过对已有信息加以适当修正的方式来达到预期目的同时尽可能减少不必要的干扰影响因素作用效果体现出来。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值