转载:https://blog.csdn.net/haiziccc/article/details/101361583
总结:
(1)tf.matmul(A,C)=np.dot(A,C)= A@C都属于叉乘,而tf.multiply(A,C)= A*C=A∙C属于点乘。
(2)叉乘称向量积;点乘指对应元素相乘,点乘的结果表示 在 方向上的投影与 的乘积,反映了两个向量的相似度,结果越大越相似。
(3)python中的数组和矩阵:
python中的numpy包下有array(obj)和mat(obj)这两个方法,一个是将对象转为数组,一个是将对象转为矩阵。
1)Numpy 中矩阵(matrix)必须是 2 维的,但是 numpy 中数组 (ndarrays) 可以是多维的;
2)创建方法:
数组:array
from numpy import *
A = array([1, 2, 3]) # 数组
B = array([1, 2, 3]) # 数组
print(A)
print(A*B) # 结果 [1 4 9] 数组相乘
print(dot(A, B)) # 结果 14 结果是数值
矩阵:mat
A = mat([1, 2, 3]) # 矩阵
B = mat([1, 2, 3]) # 矩阵
print(A*B.T) # 结果 [[14]] 结果是矩阵
print(dot(A,B.T))# 结果 [[14]] 结果是矩阵
(4)https://blog.csdn.net/weixin_43069755/article/details/88209967