python数组(矩阵)乘法(点乘、叉乘)

本文介绍了TensorFlow中的tf.matmul与tf.multiply的区别,前者表示叉乘,后者表示点乘。点乘反映两个向量的相似度,而叉乘是向量积。还探讨了Python中numpy的array和mat方法,前者创建多维数组,后者创建2维矩阵。在numpy中,矩阵乘法使用dot函数,结果可为数值或矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载:https://blog.csdn.net/haiziccc/article/details/101361583

总结:
(1)tf.matmul(A,C)=np.dot(A,C)= A@C都属于叉乘,而tf.multiply(A,C)= A*C=A∙C属于点乘。
(2)叉乘称向量积;点乘指对应元素相乘,点乘的结果表示 在 方向上的投影与 的乘积,反映了两个向量的相似度,结果越大越相似。
(3)python中的数组和矩阵:
python中的numpy包下有array(obj)和mat(obj)这两个方法,一个是将对象转为数组,一个是将对象转为矩阵。
1)Numpy 中矩阵(matrix)必须是 2 维的,但是 numpy 中数组 (ndarrays) 可以是多维的
2)创建方法:
数组:array

from numpy import *

A = array([1, 2, 3])  # 数组
B = array([1, 2, 3])  # 数组
print(A)
print(A*B)  # 结果 [1 4 9] 数组相乘
print(dot(A, B))  # 结果 14 结果是数值

矩阵:mat

A = mat([1, 2, 3])  # 矩阵
B = mat([1, 2, 3])  # 矩阵
print(A*B.T)  # 结果 [[14]] 结果是矩阵
print(dot(A,B.T))# 结果 [[14]] 结果是矩阵

(4)https://blog.csdn.net/weixin_43069755/article/details/88209967

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值