写作本博文只为学习与分享知识。所以如果本系列教程对你有帮助,麻烦不吝在github的项目上点个star吧!非常感谢!
现实生活中有许多需要提前预防一些异常问题出现的情况,例如在飞机起飞前,对飞机各部分进行评估,看发动机等各个零件是否性能正常,若有潜在的问题(可能出现异常情况),则需要及时检修或更换。
那么我们如何去评估异常是否存在呢?
利用联合概率分布~
联合概率分布
$X表示一系列随机变量{X_1,X_2,X_3,…,X_n}的组合,每个随机变量符合服从各自的一种分布。假设各变量是两两相互独立的,那么这些变量的联合概率分布为:
P ( X ) = P ( X 1 ) ∗ P ( X 2 ) ∗ . . . . ∗ P ( X n ) = Π P i P(X)=P(X_1)*P(X_2)*....*P(X_n)=\Pi P_i P(X)=P(X1)∗P(X2)∗....∗P(Xn)=ΠPi
即每个随机变量取相应值的概率的乘积。
正态分布
正态分布是一种非常常用的分布函数,其形式如图所示:
图像横轴表示随机变量x的取值,纵轴表示x取相应值的概率(0-1之间)。
该图像的函数形式(概率密度函数)为:
y = P ( x ) = 1 2 π σ ∗ e x p ( − x − μ 2 σ 2 ) y=P(x)=\frac{1}{2\pi\sigma}*exp(-\frac{x-\mu}{2\sigma^2}) y=P(x)=2πσ1∗exp(−2σ2x