Anomaly Detection-异常检测算法(Coursera-Ng-ML课程)

本文介绍了如何使用联合概率分布和正态分布进行异常检测。通过实例展示了如何计算特征的平均值和标准差,利用正态分布的2-σ特性判断异常情况。在模型训练中,假设特征独立并近似正态分布,计算联合概率以检测异常。虽然实际中特征可能不独立,但在许多情况下,这种方法仍能有效检测异常。
摘要由CSDN通过智能技术生成

写作本博文只为学习与分享知识。所以如果本系列教程对你有帮助,麻烦不吝在github的项目上点个star吧!非常感谢!

现实生活中有许多需要提前预防一些异常问题出现的情况,例如在飞机起飞前,对飞机各部分进行评估,看发动机等各个零件是否性能正常,若有潜在的问题(可能出现异常情况),则需要及时检修或更换。

那么我们如何去评估异常是否存在呢?

利用联合概率分布~

联合概率分布

$X表示一系列随机变量{X_1,X_2,X_3,…,X_n}的组合,每个随机变量符合服从各自的一种分布。假设各变量是两两相互独立的,那么这些变量的联合概率分布为:
P ( X ) = P ( X 1 ) ∗ P ( X 2 ) ∗ . . . . ∗ P ( X n ) = Π P i P(X)=P(X_1)*P(X_2)*....*P(X_n)=\Pi P_i P(X)=P(X1)P(X2)....P(Xn)=ΠPi

即每个随机变量取相应值的概率的乘积。

正态分布

正态分布是一种非常常用的分布函数,其形式如图所示:

这里写图片描述

图像横轴表示随机变量x的取值,纵轴表示x取相应值的概率(0-1之间)。

该图像的函数形式(概率密度函数)为:

y = P ( x ) = 1 2 π σ ∗ e x p ( − x − μ 2 σ 2 ) y=P(x)=\frac{1}{2\pi\sigma}*exp(-\frac{x-\mu}{2\sigma^2}) y=P(x)=2πσ1exp(2σ2x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值