2016数模竞赛论文

小区开放对道路通行的影响
摘要
本文首先对小区开放的评价指标进行了研究,开放小区可由路网的负荷度,排队长度,道路通行能力,流量通行能力比率 ,控制延误,空间伸缩指数等分析指标来判断。在规定范围内可以判定是否开放该封闭式小区。
其次采用模拟计算车辆运动以及交叉口信号交替变化的方法,对现实中得情况进行模拟运动进行建模,建立了两个模型,分别为排队时间模型和阻抗模型,并给该模型设计了c++程序,通过实验最后获得现实参数代入,获取对照表,此模型能充分看出在不同范围内影响的大小值,能明显给出是否开放该地区的封闭性小区的评判。
再次建立评价系统,测评小区开放对周边道路的影响。分析与收集指标,道路通行能力利用阻抗模型以及交叉口延误计算办法建立了新阻抗模型:车辆通行模型用启动波/停车波模型替换,同时加进格林希尔治和格林伯模型进行密度取舍,在不同的密度下选择不同模型结合,算出格林波+启动/停车波模型。建立相关模型,并构建不同类型开放小区,测试不同状况路段的延误。
最后,根据建模分析的结果,给城市规划和交通管理部门提出关于小区开放的合理性建议。
关键字:启动波和停车波;排队长度;道路通行能力;道路服务水平;阻抗函数;空间伸缩系数。
一、问题重述
封闭式住宅小区已经对城市交通道路的路网结构产生了一定的破坏性,国务院2016年2月21日发布《关于进一步加强城市规划建设管理工作的若干意见》,其中推出街区制。除了开放小区可能会带来的安保问题以外,大家议论的焦点有三个:第一种观点,小区封闭破坏了城市路网结构,容易造成交通堵塞,小区开放后,能使得路网密度提高,道路面积增加,通行能力也就自然会有提升。第二种观点,开放小区后小区的面积,外部结构等多种因素可能会对周边环境造成更大的影响从而加重交通负担,因此不需要开放。还有一种观点认为与诸多因素有关,不能一概而论。然而城市道路网络构成了城市的骨架,是城市社会经济活动和客货运输的载体,是城市交通赖以正常运行的物质基础。城市道路网络作为城市的生命线,其在城市中的核心地位,决定了它在城市运行中的骨干作用。一方面完善其路网通行能力可为其区域经济联系提供良好交通环境,另一方面,随着城市的急剧扩增居民增长,出行时间增长,舒适要求程度增大,路网压力随之增大,开放封闭式小区能完美解决路网结构问题。评价封闭式小区开放时对周边道路的影响需要从不同的指标来判断,尤其是在针对研究小区的道路通行力,因此请构建一个好的车辆通行模型来判断影响值有多大;计算小区开放后产生的新路网结构和周边路网结构以及车流量等因素之间的关系;请构建不同类型的小区,选取不同的模型来分析小区开放对周边的道路通行影响;同时请从交通通行的角度向城市规划和交通管理部门提出合理化的建议。
二、问题分析
2.1问题一分析
根据我国封闭式住宅小区的开放问题,我们考虑到开放小区路面,车辆流量和交通路况结构会受其影响,因此我们建立小区开放道路的影响测评系统,然后对其进行优化。小区开放所产生的影响评判标准可通过车流量,延误时间,负荷度等来评判。开放小区可由路网,负荷度,排队长度,道路通行能力,流量通行能力比率 ,控制延误,空间伸缩指数等分析指标来判断。
2.2问题二分析
小区的开放对于车辆通行来讲,主要是由关于它的通行能力和交通堵塞值,有关堵塞我们采用启动波和停车波的模型计算它的停车时间,然后通过格林希尔治和格林伯模型,计算它的排队长度,在规定的排队长度之内我们决定开放该小区,否则不予以开放。

三、问题假设
假设1 道路设计通行能力是基于道路服务水平实现的。
假设2 行驶时间不受人和非机动车辆的影响
假设3 新增支路受行人和非机动车辆影响在可控范围内。
假设4 车流阻抗处于正常状态。
假设5 小区开放道路的服务水平为建议值
四、模型的建立与求解
4.1 问题一评价体系的建立
4.1.1 问题一各项指标分析
对于问题一,我们采用Braess经典图论模型来研究。根据Braess理论中增加交通路线有时反而降低运输效率。新增交通干道主要目的是减少该区域的交通阻抗作用,然而对于商业区,开放封闭式小区可能造成交通事故频繁,给网路增加负担从而起到相反的作用,因此我们引进由数学家 Dietrich Braess在1968年的一篇文章中提出的Braess悖论[2]。
后来Pas和Principcipio在1997年的一篇论文中指出Braess悖论不发生的两种情况即:
第一:交通需求较低时:

第二:交通需求较高:

——出发点交通量, ;
——为路段 相邻或相交道路的自由时间, ;
——在路段上的延误时间参数。
当Q在二者需求之间时,不会出现Braess现象,反之亦然。
服务水平指标,负荷度指标以及排队长度指标:
表4.1服务水平指标[1]
服务水平指标 一级(优) 二级(良) 三级(较差) 四级(差)
控制延误( ) <30 30~50 50~60 >60
负荷度 <0.6 0.6~0.8 0.8~0.9 >0.9
排队长度/km <3 3~8 8~10 >10
<0.001 0.001~0.002 0.002~0.003 >0.003

车道的通行能力指标由表4.2和表4.3所示。
表4.2表示城市道路一条车道的通行能力[1]
设计速度( ) 60 50 40 30 20
基本通行能力( ) 1800 1700 1650 1600 1400
设计通行能力() 1400 1350 1300 1300 1100

表4.3信号交叉口服务水平[1]
服务水平指标 一级(优) 二级(良) 三级(较差) 四级(差)
控制延误( ) <30 30~50 50~60 >60
负荷度 <0.6 0.6~0.8 0.8~0.9 >0.9
排队长度/km <3 3~8 8~10 >10
<0.001 0.001~0.002 0.002~0.003 >0.003

4.1.2问题一数据采集:

道路通行能力计算:
道路的通行能力计算是在理想环境下,将时间段离散化成为单位时间来进行计算某一段路的交通量:
表4.4 道路通行能力与交通安全分级标准
分级 通行能力指数 交通安全指数
优 道路非常通畅 出行人安全系数非常高,
未出现交通事故
良 道路通畅 出行人安全系数高,
很少出现交通事故
中 道路拥堵 出行人安全系数一般,
出现交通事故较少
差 道路非常拥堵 出行人安全系数很差,
交通事故频发

针对问题一的空间伸缩问题可以通过非机动车道、 人行道、 中央分隔带与机非分隔带宽度来实现,设非机动车道宽度为, 人行道宽度为 ,中央分隔带宽度为 , 机非隔离带宽度为 ,对应的评价标准[4]
表4.5交通安全分级标准
分级 空间伸缩指数
优 或或或
良 或或或
中 或 或
次 或 或 或
差 或 或 或

4.1.3问题一模型建立
一条道路的理论通行能力计算公式为:
() (10)
式中=理论通行能力, ;
=平均车头时距, 。
下表是我国2012年《城市道路工程设计规范》给出的一条车道可能通行能力建议值[3]。
表4.6一条道路可能通行能力建议值
计算行车速度(km/h) 50 40 30 20
可能通行能力(pcu/h) 1690 1640 1550 1380
一条车道的可能通行能力计算公式为

式中:
——一条车道可能通行能力[];
——自行车影响系数
——车辆宽度影响系数
——交叉口影响系数
各种影响系数=修正系数
所以设计通行能力=可能通行能力乘以修正系数(v/c)
(11)
其中修正系数由道路服务水平确定,下表为建议值[1]:
表4.7服务水平建议值
等级 一级 二级 三级 四级上半段 四级下半段
修正系数 <0.60 0.60~0.75 0.75~0.90 0.90~1.00 >1.00

对于问题一的时间延误问题本文中采用交叉口平均延误计算方法。平均延误计算表达为
(12)
式中:
——信号周期长度, ;
——有效绿灯时间,;
——车道组V/C或饱和度,V/C指在理想条件下,流量/通行能力比率。
行驶时间是判断两地的便捷性最大的指标,通过研究路阻函数BRP[1],将路段各个路阻函数计算出来,在此之前,美国的BRP函数只考虑了实际流量对行驶时间的影响,没有考虑到周边环境例如行人和非机动车辆的影响,在此我们引进改进版BRP阻抗函数[1],原阻抗函数是:

式子中: —从路段 到路段
——路段ij上的走行时间, ;
——在第个路段上的自由流时的走行时间, ;
—— 若没有数据表明即车流阻抗处于正常状态则 。
否则对BRP进行对数化处理得:

其中 都是常数,可以从调查中找到:
= , , ,则有
然后转换为一元回归分析问题,利用最小二乘得:

由于新增的道路属于城市路网的支路部分,一般为双向8车道,受行人和非机动车辆影响较大,车辆流速不够,当非机动车辆交通量没有超过通行能力即未造成很大交通影响的时候我们取系数0.8,当超过时,有以下表格和公式计算[1]
表4.8干扰程度
干扰程度 很严重 严重 较严重 一般 很小 无
η

式中:—电动车对机动车干扰系数;
——道路上实测电动车车辆交通量;
——非机动车道路每米电动车设计通行能力;
——单向非机动车车道宽度;
——非单向机动车道宽度。
因此我们改进后的BRP为下面公式:


     (13)

4.1.4问题一测试结果及结论
样例:
2016年9月份实测赫山区迎宾东路和团圆路交叉路口主干道次干道和支路三组数据调查:
表4.9交叉路实测数据
主干道 次干道 支路
35 40 45 20 22 25 15 18 16
22 35 33 18 18 19 14 14 13
600 800 950 660 620 600 300 200 100
1000 1000 1000 700 700 700 450 450 450
5 5 3 10 21 2 12 10 5
20 20 20 10 10 10 3 3 3
3 3 3 2 2 2 1 1 1
15 15 15 10 10 10 7 7 7
118 112 110 102 102 99 90 88 90
45 35 35 33 30 33 25 15 25
0.000333483 0.00105397 0.00204626 0.00296659 0.00366408 0.00149372 0.00406649 0.000384775 0.000059119
然后利用code blocks编程软件进行计算,D越小表示路阻越小即小区开放对周边道路通行影响越小。
论文[1]提出的改进版综合路阻BRP模型,代入参数来判断是否合适开放该小区。
由测试结果得,当 值小于0.0001时为正常且道路开放影响不大,其余值则会对该区域人行产生阻碍影响。
核心c++代码:
double tij=16;
double vij=100;
double Qbike=3;
double qbike=5;
double w2=7;
double w1=1;
double cij=450;
double T=90;
double tg=25;
double x=vij/cij;
double yita=0.8;
double beita=4;
double ans1=tij+(0.5*T*(1-tg/T)/(1-(min(1.0,x)*tg/T)));
double ans2;
if(yita>1)
{
double ans3=(0.8*(0.8-(qbike/Qbike+0.5-w2)/w1)*vij);
ans2=pow(ans3/(0.8*cij),beita);
}
else
{
double ans3=(0.8*(0.8-(qbike/Qbike+0.5-w2)/w1)*cij);
ans2=pow(vij/ans3,beita);
}
具体代码见附录2.

4.2问题二模型建立与求解
4.2.1 问题二全面分析
小区的开放对于车辆通行能力的影响主要在于是否有开放干道,是否有对非机动车辆和行人的影响,同时针对行人还能发现有时间延误参数的影响。且当小区开放时,其自身设计道路的通行能力与实际道路通行能力有其参数性质的差别。我们通过分析城市道路的一条车道的通行能力来计算该区域的城市道路通行能力。通过统计空间伸缩能力来进行当前小区的干道车辆通行能力分析。
针对问题二的排队时间,车流在运行过程中,遇到交通堵塞,道路封闭,交通事故等因素均会导致一条或者多条道路堵塞,在信号交叉口红灯信号时车流密度会即时增大,产生与车流运动相反的停车波,从而形成排队时间。直到道路开启,排队的车辆才会渐渐消失,当启动波的波速值大于停车波的波速值时,启动波总会在某一时刻追上停车波,而它们相遇的位置就是排队时间消散的准确位置,即恢复交通从而不产生影响。
4.2.2问题二模型建立
我们发现传统的停车波和启动波模型:
格林希尔治模型:

式中: 为阻塞密度; 为自由流速度。
令 ,称 为标准化密度,则有

代入波速公式:

整理的:
(14)
调用code blocks(以下所有C++代码均由该软件执行编译)求启动停车波模型的排队消散时间,C++核心代码为:
double k1,k2,n1,n2,vf;
double vm;
vm=vf*(1-(n1-n2));
cout<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值