Cross-Lingual Document Classification

博客探讨了Cross-Lingual Document Classification的概念,即利用在一种语言上训练的模型进行另一种语言的文本分类。提到的数据集包括Reuters RCV1/RCV2 English-to-German和MLDoc Corpus,后者是Facebook基于路透社数据创建的多语言分类资源,旨在解决不同语言间类别分布不均衡的问题。重点讨论了模型参数的迁移可能性。
摘要由CSDN通过智能技术生成

Cross-Lingual Document Classification

跨语言文档分类,指在训练数据多的语言分类任务中训练模型,用于另一种文本较少的语言分类任务。

是否可以在一种语言分类中训练gml模型中的参数(因子的参数等),再用于另一种语言分类任务?

Reuters RCV1/RCV2 English-to-German:
路透社的不同语言的新闻报道。
在这里插入图片描述
MLDoc (Multilingual Document Classification Corpus):
多语言文档分类语料库,是涵盖英语,德语,法语,西班牙语,意大利语,俄语,日语和中文的跨语言文档分类数据集。
Facebook根据路透社语料库构建。原语料库中不同语言之间的类先验分布有显着差异,此数据集先验类别较均衡。

MLDoc Zero-Shot English-to-Chinese:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值