安装YOLOV8环境报错解决办法

我在安装yolov8环境的时候,使用pip安装ultralytics包,输入

pip install -r requirements.txt
E:\companyitem\YOLO-V8\ultralytics>pip install -r requirements.txt
WARNING: Ignore distutils configs in setup.cfg due to encoding errors.
Collecting matplotlib>=3.3.0
  Using cached matplotlib-3.8.2-cp39-cp39-win_amd64.whl (7.6 MB)
Collecting numpy>=1.22.2
  Using cached numpy-1.26.3-cp39-cp39-win_amd64.whl (15.8 MB)
Collecting opencv-python>=4.6.0
  Using cached opencv_python-4.9.0.80-cp37-abi3-win_amd64.whl (38.6 MB)
Collecting pillow>=7.1.2
  Using cached pillow-10.2.0-cp39-cp39-win_amd64.whl (2.6 MB)
Collecting pyyaml>=5.3.1
  Using cached PyYAML-6.0.1-cp39-cp39-win_amd64.whl (152 kB)
Collecting requests>=2.23.0
  Using cached requests-2.31.0-py3-none-any.whl (62 kB)
Collecting scipy>=1.4.1
  Using cached scipy-1.11.4-cp39-cp39-win_amd64.whl (44.3 MB)
Collecting torch>=1.8.0
  Downloading torch-2.1.2-cp39-cp39-win_amd64.whl (192.2 MB)
      --------------------------------------- 3.1/192.2 MB 19.2 kB/s eta 2:43:56

出现安装失败,如下图所示:

8c90c940aaab3b53dce969dce1bc4582.png

之后又试了几次,还是一样的效果,慢到想砸电脑!!!

思考一番,发现可能是镜像源的问题。于是,我们切换一下镜像源,神奇的一幕出现了,安装速度快到极致,如下图:

86a294ce147fe37c5c4d6f9ca401a491.png

这里我们可以切换两种镜像源,一个是阿里云的

我们可以这样写:

pip config set install.trusted-host mirrors.aliyun.com

另一个是豆瓣的,我们在命令行直接写:

pip config set global.index-url https://pypi.doubanio.com/simple

然后你就会发现,原来几十分钟几个小时都下载不下来的环境,现在几分钟就给你搞定了!

 

### YOLOv11 环境配置错误解决方案 对于 YOLOv11 这样的深度学习模型,在环境配置过程中可能会遇到多种类型的错误。虽然具体针对 YOLOv11 的文档较少,但从其他版本如 YOLOv7 和 YOLOv5 中可以获得一些通用的指导原则。 #### 常见错误及其解决办法 ##### 1. Python 版本不兼容 确保使用的 Python 版本与项目需求相匹配。通常情况下,YOLO 类项目的推荐 Python 版本为 3.8 或以上。如果使用较低版本可能引发各种未定义行为或模块加载失败等问题[^1]。 ##### 2. PyTorch 安装问题 由于 YOLOv11 同样依赖于 PyTorch 框架,因此正确安装合适的 PyTorch 版本至关重要。建议按照官方指南选择 CUDA 版本对应的 PyTorch 发行版进行安装。可以通过以下命令来验证 PyTorch 是否成功安装以及 GPU 支持情况: ```bash python -c "import torch; print(torch.cuda.is_available())" ``` 如果返回 `False` 则表示未能正常识别到 GPU 设备,需重新检查驱动程序及 PyTorch 安装过程。 ##### 3. 缺少必要的库文件 有时会因为缺少某些特定的第三方库而导致运行时报错。比如在尝试导出 ONNX 格式的模型时遇到了 `'Upsample' object has no attribute 'recompute_scale_factor'` 错误,这通常是由于所用的 PyTorch 版本过低造成的。升级至最新稳定版 PyTorch 可能解决问题[^2]。 ##### 4. CommandNotFoundError 处理 当执行脚本时提示找不到命令 (CommandNotFoundError),可能是路径设置不当或是虚拟环境中尚未激活的原因。确认已将 Anaconda 或 Miniconda 添加到了系统的 PATH 环境变量中,并且每次启动终端前都应先激活相应的 conda 虚拟环境[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值