【深度学习】YOLOv8:别再pip install ultralytics了

🔥博客主页: A_SHOWY
🎥系列专栏力扣刷题总结录 数据结构  云计算  数字图像处理  力扣每日一题_  

随着YOLOv8的版本不断更新,最新的几个版本会发现没有requirements.txt和setup.py,在安装包的依赖的时候,直接pip install ultralytics,再装个GPU版本的torch三件套就开始用,倘若直接用源码跑还好,如果想要改进yolov8代码,那就倒霉了。

问题

比如有些朋友会想加一个CBAM注意力机制,或者是改一下conv,发现加上去以后,keyerror:“CBAM”等等keyerror的问题。

解决

比较好用的解决办法就是 如果你以前已经装了ultralytics了,直接

pip uninstall ultralytics

requirements.txt

然后根据我提供的两个文件,第一个是requirements.txt,里面是我们需要跑代码的版本要求,注意文件名要和我给的一模一样

#pip install -r requirements.txt
# Ultralytics requirements
# Usage: pip install -r requirements.txt

# Base ----------------------------------------
hydra-core>=1.2.0
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.1
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.64.0

# Logging -------------------------------------
tensorboard>=2.4.1
# clearml
# comet

# Plotting ------------------------------------
pandas>=1.1.4
seaborn>=0.11.0

# Export --------------------------------------
# coremltools>=6.0  # CoreML export
# onnx>=1.12.0  # ONNX export
# onnx-simplifier>=0.4.1  # ONNX simplifier
# nvidia-pyindex  # TensorRT export
# nvidia-tensorrt  # TensorRT export
# scikit-learn==0.19.2  # CoreML quantization
# tensorflow>=2.4.1  # TF exports (-cpu, -aarch64, -macos)
# tensorflowjs>=3.9.0  # TF.js export
# openvino-dev  # OpenVINO export

# Extras --------------------------------------
ipython  # interactive notebook
psutil  # system utilization
thop>=0.1.1  # FLOPs computation
# albumentations>=1.0.3
# pycocotools>=2.0.6  # COCO mAP
# roboflow

# HUB -----------------------------------------
GitPython>=3.1.24

setup.py

这个是一个脚本文件,直接在根目录创建复制进去就行

# Ultralytics YOLO 🚀, GPL-3.0 license

import re
from pathlib import Path

import pkg_resources as pkg
from setuptools import find_packages, setup

# Settings
FILE = Path(__file__).resolve()
ROOT = FILE.parent  # root directory
README = (ROOT / "README.md").read_text(encoding="utf-8")
REQUIREMENTS = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements((ROOT / 'requirements.txt').read_text())]


def get_version():
    file = ROOT / 'ultralytics/__init__.py'
    return re.search(r'^__version__ = [\'"]([^\'"]*)[\'"]', file.read_text(), re.M)[1]


setup(
    name="ultralytics",  # name of pypi package
    version=get_version(),  # version of pypi package
    python_requires=">=3.7.0",
    license='GPL-3.0',
    description='Ultralytics YOLOv8 and HUB',
    long_description=README,
    long_description_content_type="text/markdown",
    url="https://github.com/ultralytics/ultralytics",
    project_urls={
        'Bug Reports': 'https://github.com/ultralytics/ultralytics/issues',
        'Funding': 'https://ultralytics.com',
        'Source': 'https://github.com/ultralytics/ultralytics',},
    author="Ultralytics",
    author_email='hello@ultralytics.com',
    packages=find_packages(),  # required
    include_package_data=True,
    install_requires=REQUIREMENTS,
    extras_require={
        'dev':
        ['check-manifest', 'pytest', 'pytest-cov', 'coverage', 'mkdocs', 'mkdocstrings[python]', 'mkdocs-material'],},
    classifiers=[
        "Intended Audience :: Developers", "Intended Audience :: Science/Research",
        "License :: OSI Approved :: GNU General Public License v3 (GPLv3)", "Programming Language :: Python :: 3",
        "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8",
        "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10",
        "Topic :: Software Development", "Topic :: Scientific/Engineering",
        "Topic :: Scientific/Engineering :: Artificial Intelligence",
        "Topic :: Scientific/Engineering :: Image Recognition", "Operating System :: POSIX :: Linux",
        "Operating System :: MacOS", "Operating System :: Microsoft :: Windows"],
    keywords="machine-learning, deep-learning, vision, ML, DL, AI, YOLO, YOLOv3, YOLOv5, YOLOv8, HUB, Ultralytics",
    entry_points={
        'console_scripts': ['yolo = ultralytics.yolo.cli:cli', 'ultralytics = ultralytics.yolo.cli:cli'],})

终端执行命令

python setup.py install

结束以后输入yolo,显示如下成功

anaconda prompt执行命令

 然后打开anaconda prompt,进入你配置的环境,看一下安装列表

conda activate ***
pip list

去torch官网下载自己合适的cuda版本

pip list以后发现torchvision版本不对应,我这个是2.22版本+cu118 去官网查一下对应版本,先把老版本卸载,再装新的,大概2.7G左右

pip uninstall torchvision
pip install torchvision==0.17.1+cu118 -f https://download.pytorch.org/whl/torch_stable.html

三件套安装成功且版本对应

直接回去可以改框架跑自己的数据集了 

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

A_SHOWY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值