1 坑一:加载 requirements.txt,直接 pip install -r requirements.txt
numpy==1.16.3
matplotlib==3.1.0
Pillow==6.0.0
easydict==1.9
opencv-contrib-python==4.5.2.52
opencv-python==4.5.1.48
pandas==1.1.5
PyYAML==5.3.1
scikit-image==0.17.2
scikit-learn==0.24.0
scipy==1.5.4
seaborn==0.11.2
tensorboard==2.5.0
tensorboardX==2.1
torch==1.7.1+cu110
torchvision==0.8.2+cu110
tqdm==4.55.1
xmltodict==0.12.0
basetrainer
pybaseutils
1.1pytorch 和 torchvision 千万不要这样装
正确的步骤如下: 如果需要用GPU,先安装显卡驱动,然后nvidia-smi 看cuda支持信
nvidia-smi
息, NVIDIA-SMI 555.85 Driver Version: 555.85 CUDA Version: 12.5
发现如果装最新的驱动,其实CUDA可以支持很高的版本,然后再去PyTorch官网看看支持的version,普遍都是11或者12,选择11,那么可以用11.8 版本作为项目需求,这样既不最新,又不过分落后
1.2 安装cuda 11.8 和cuDNN
1.2.1 安装 cuda 11.8
CUDA Toolkit Archive | NVIDIA Developer 找到对应的版本,下载安装,然后添加一堆相关在环境变量
计算机上点右键,打开属性->高级系统设置->环境变量,可以看到系统中多了CUDA_PATH和
CUDA_PATH_V11两个环境变量。
接下来,还要在系统中添加以下几个环境变量:
这是默认安装位置的路径: C:\ProgramData\NVIDIA Corporati