DeepSeek官方推荐软件汇总

这段时间以来,各大云服务厂商先后推出DeepSeek API服务,不少国产芯片企业也纷纷宣布完成模型适配工作,基于DeepSeek也催生出许多应用层面的产品,这是自2022年底ChatGPT发布之后的又一次AI领域的盛况。

个人感觉单纯从影响力来说,DeepSeek系列模型的发布,不仅仅像一个模型了,更像是一个底层操作系统或者一个全新的生态,在未来可能诞生更多的机会或杀手级别的应用。

本文从DeepSeek官方推荐的应用或插件列表中,整理收集了一些比较热门或实用性较强的软件。对于普通用户而言,可以体验到最先进的工具;对于开发者来说,从中吸纳优秀产品的特性或许对于自己的开发工作有所益处。

更多官方推荐的软件,可查看完整列表:

https://github.com/deepseek-ai/awesome-deepseek-integration

RAG框架

RAGFlow是一个基于深度文档解析的开源 RAG框架,可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。

RAGFlow UI

配置 deepseek API

笔记

思源笔记是一款注重隐私的个人知识管理系统,支持完全离线使用,并提供端到端加密的数据同步功能。通过融合块、大纲和双向链接,重构你的思维方式,支持细粒度块级引用和 Markdown 所见即所得。

思源笔记产品

### DeepSeek软件测试中的应用 #### 日志分析的重要性 在现代软件开发中,高效的日志分析对于发现问题和优化性能至关重要。随着系统复杂性的增加,手动分析日志变得尤为困难,尤其是在处理海量数据时[^1]。 #### DeepSeek简介 DeepSeek是一款先进的日志分析工具,它结合了Python的强大功能,为测试工程师提供了灵活且高效的解决方案。通过使用DeepSeek,测试工程师可以更加快速地识别并解决问题,从而提高工作效率。 #### 使用DeepSeek进行日志分析的方法 为了更好地理解如何使用DeepSeek进行日志分析,下面是一个简单的示例代码: ```python import deepseek as ds def analyze_logs(log_file_path): # 初始化DeepSeek客户端 client = ds.Client() # 加载日志文件 logs = client.load_log(file=log_file_path) # 进行初步过滤,只保留错误级别的日志条目 error_logs = logs.filter(level='ERROR') # 对错误日志进行聚合统计 stats = error_logs.aggregate(by=['module', 'error_code']) # 输出统计结果 print(stats.to_string()) if __name__ == "__main__": log_file = "path/to/your/logfile.log" analyze_logs(log_file) ``` 这段代码展示了如何利用DeepSeek加载、过滤以及聚合日志数据。具体来说,`ds.Client()`用于初始化DeepSeek客户端;`load_log()`函数负责读取指定的日志文件;而`filter()`方法则允许根据特定条件筛选日志记录;最后,`aggregate()`函数能够按照给定字段对日志进行分组汇总。 #### 实际应用场景 在实际的软件测试过程中,可以通过定期运行上述脚本来自动检测应用程序产生的异常情况,并及时通知相关人员采取措施加以解决。此外,还可以进一步扩展此流程,比如集成到持续集成(CI)管道当中,在每次构建完成后自动生成详细的日志报告供团队成员审查。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值