Argo基础课程3-BGC-Argo数据质量控制

本文详细描述了Coriolis/France项目的数据获取过程,包括实时发布的Argo浮标数据、自动质量控制步骤、不同数据模式的命名规则,以及叶绿素数据的校正方法,如原位校正、非光化学淬灭校正和修正因子。同时提及了盐度和溶解氧在BGC参数校正中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 数据获取:
    Coriolis/France: https://data-argo.ifremer.fr/dac/
    FNMOC/USA: https://usgodae.org/pub/outgoing/argo/dac/

  • Real-Time数据
    24小时内发布,提交至自动质量控制平台进行标记和调整,“R”

  • Delayed-mode数据
    经过仔细浏览时间序列,与参考值进行比较,至少每年进行1次分析(BGC更常见),‘A’, or ‘D’

  • 数据的命名规则:
    在这里插入图片描述

  • txt及gz文件:浮标、剖面和参数的潜在设置

  • “aux”文件夹:实验浮标的辅助数据

  • “dac”文件夹:剖面数据

  • “etc”文件夹:数据管理器的杂项文件

  • “geo”文件夹:core argo only,以海洋为分类

  • 建议使用Sprof文件,集成了所有剖面

  • 数据标签:
    在这里插入图片描述

  • D模式数据:目视检查过,具有最高质量

  • A模式数据:实时调整,较好的质量

  • R模式数据:Raw data,可能具有仪器误差

  • 数据质量标签:

0未进行质量控制
1Good data
2Probably good data
3“Questionable” (Raw BGC)
4Bad data
5Value changed
8Estimated value
9missing value
  • 叶绿素数据的校正
    CHLA = (Sensor_count – DARK_CHLA) * SCALE_CHLA
    假定*(a*Φf) 是一个常数,会随着物种的类型、细胞大小、色素分布,浮游植物健康,光照水平,水柱的深度以及时间的变化进行变化。
    RT校正
    1.原位黑暗校正,最初5个cycle最小值的中值
    2.非光化学淬灭校正,Xing 2012
    3.修正因子的校正(修改的比例因子)
    4.Scale_factor因子(Scale_chla)目前使用值为2;Xing(2011)提出全球局地的chla斜率,可用于实时的校正

  • BBP700—与几何学相关
    在这里插入图片描述
    新的质控标准将大型动物的spikes标记为“3 pribably bad”

  • POC计算:
    在这里插入图片描述

  • 注:盐度数据用在较多BGC参数的校正中,溶解氧数据用在PH和营养盐的校正中

### ToothFairy2 数据集概述 ToothFairy2 是一个专注于口腔医学影像分析的数据集,特别适用于牙齿分割和识别任务。该数据集包含了高分辨率的牙科CBCT(锥形束计算机断层扫描)图像以及相应的标注文件[^1]。 ### 获取与下载 为了获取 ToothFairy2 数据集,建议访问原始发布者的 GitHub 页面或其他官方渠道。通常情况下,在项目主页会有详细的下载指南。对于此特定数据集而言,可以从 beamandrew 的 medical-data 仓库中找到链接或直接下载资源。 ### 使用说明 #### 文件结构 解压后,目录可能包含如下几个部分: - `images`:存储原始 CBCT 扫描图片; - `labels` 或 `annotations`: 存储对应于每张图片的手动标记结果; - 文档 (`README.md`) 和许可协议等辅助材料。 #### Python 示例代码加载数据集 ```python import os from PIL import Image import numpy as np def load_data(data_dir='path/to/dataset'): images_folder = os.path.join(data_dir, 'images') labels_folder = os.path.join(data_dir, 'labels') image_files = sorted([os.path.join(images_folder, f) for f in os.listdir(images_folder)]) label_files = sorted([os.path.join(labels_folder, f) for f in os.listdir(labels_folder)]) dataset = [] for img_file, lbl_file in zip(image_files, label_files): with Image.open(img_file) as im: image_array = np.array(im) with open(lbl_file, 'r') as file: label_content = file.read() item = {'image': image_array, 'label': label_content} dataset.append(item) return dataset ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值