并查集
简单并查集
不需要模板
带权并查集
int pre[N];
int findi(int x){
if(pre[x]==x) return x;
int r = findi(pre[x]);
/**
省略了权值间关系转化,具体视情况而定
*/
pre[x]=r;
return r;
}
void join(int x,int y,int X,int Y){
int fx = findi(x),fy = findi(y);
pre[fx]=fy;
/**
省略了权值间关系转化,具体视情况而定
*/
return ;
}
并查集(可拆点)
可以明确的是,对于一个并查集来说,合并操作是不可逆的,即两个元素处在同一个集合下,那么就不能将两者拆开否则会产生错误.那么问题来了
问:如果一个节点的关系发生改变了怎么办呢?
答:如果要改变节点a的关系重新创建一个节点p表示节点a,原先的节点a就不要了,通过一个映射,映射过去就行了(map[a]=p)
int pre[N],h[N],hh;
int findi(int x){
if(pre[x]==x) return x;
int r = findi(pre[x]);
pre[x]=r;
return r;
}
void join(int x,int y,int X,int Y){
int fx = findi(x),fy = findi(y);
pre[fx]=fy;
return ;
}
void creat(int now){
h[now]=++hh;
pre[hh]=hh;
}
可持久化并查集
可持久化数据结构就是可以访问历史版本的数据结构,能修改之后还能查询之前的状态就是可持久化。
现在还没有学明白,会更新上的。
树状数组(Tree array)
详解戳这里<<—
这里有最详细的树状数组各种操作的模板
注意:一定要仔细看数据范围 如果是从0开始的 那么在树状数组中一定要加上1然后在操作 因为求和的时候有-1操作 所以不这样就会无限TLE…
1.前缀和
2.[1,n]的最大最小值 ,换句话就还是前缀的东西.
3.区间覆盖的问题 (仅限对区间进行增改值的,更新还是一样查询的时候注意只要getSum(id)就行了)
一维树状数组
//切记 在多组数据的题上要清空数组
const int N = 50000 + 5; //数列的大小
#define lowbit(x) (x&(-x)) //lowbit操作
int sum[N],cnt;
void update(int index,int val){ //单点更新 (+val)
for(int i=index;i<=N;i+=lowbit(i)){//i<=N 不能<=cnt<--错了
sum[i]+=val;
}
}
int getSum(int index) { //求解1~index的和
int ans = 0;
for (int i = index; i; i -= lowbit(i))
ans += sum[i];
return ans;
}
void update(int l,int r,int val){
update(l,val),update(r+1,-val);
}
int query(int l,int r){
return getSum(r)-getSum(l-1);
}
/*
一维区间更新(a,b)
update(a,1);
update(b+1,-1);
*/
二维树状数组
原理和一维的一模一样
const int N = 1000+5;
#define lowbit(x) (x&-x)
LL sum[N][N];
void update(int xi,int yi,int val){
for(int i=xi;i<=N;i+=lowbit(i))
for(int j=yi;j<=N;j+=lowbit(j))
sum[i][j]+=val;
return;
}
int getSum(int xi,int yi){
int ans = 0;
for(int i=xi;i>0;i-=lowbit(i))
for(int j=yi;j>0;j-=lowbit(j))
ans+=sum[i][j];
return ans ;
}
void update(int x,int y,int X,int Y,int val){
update(x,y,val);
update(x,Y+1,-val);
update(X+1,y,-val);
update(X+1,Y+1,val);
}
int query(int x,int y,int X,int Y){
return getSum(X,Y)-getSum(X,y-1)-getSum(x-1,Y)+getSum(x-1,y-1);
}
/*
二维区间更新
{(a,b)|a∈[x,X],b∈[y,Y]}
1.update(x,y,val);
2.update(x,Y+1,-val);
3.update(X+1,y,-val);
4.update(X+1,Y+1,val);
*/
线段树(Segment Tree)
详解戳这里
线段树维护区间和。
—————————————.
/*
一定要注意数据范围,必要的时候必须用LL。
注意要求,来决定如何更新。
*/
const int N = 100000+5;
struct node
{
int l,r; //节点的区间
int val; //节点的值
int lazy;//lazy_tag标记, 区间更新的时候用的
int m(){return (l+r)>>1;}
int len(){return r-l+1;}
}tree[N<<2]; //数组要开到四倍啊 这样才不会越界 ,如果超时的话也要看看是不是数组开小了
int cnt,a[N],ans;
bool vis[N];
#define ll (rt<<1)
#define rr (rt<<1|1)
#define mid (tree[rt].m())
void pushup(int rt) //线段树维护值的操作
{
tree[rt].val=tree[ll].val+tree[rr].val;
}
void build(int rt,int l,int r)//建树
{
tree[rt].l=l,tree[rt].r=r,tree[rt].lazy=0; //记得区间更新的时候 每次建树 要将lazy_tag标记清0
if(l==r)
{
tree[rt].val=1;
return ;
}
build(ll,l,mid);
build(rr,mid+1,r);
pushup(rt);
}
void update(int rt,int pos,int val)//单点更新 当前的树的节点 更新的节点 更新的值的变化
{
if(tree[rt].l==tree[rt].r)//单点更新的时候只要把叶子节点的值更新 剩下的log回溯就行了
{
tree[rt].val+=val;
return;
}
if(pos<=mid) update(ll,pos,val);
else update(rr,pos,val);
pushup(rt);//必须要有的啊 。。
}
void pushdown(int rt) //向下更新的节点。
{
if(tree[rt].lazy)
{
tree[ll].lazy = tree[rr].lazy =tree[rt].lazy ;//根据要求决定如何更新
tree[ll].val = tree[ll].len()*tree[rt].lazy ;
tree[rr].val = tree[rr].len()*tree[rt].lazy ;
tree[rt].lazy = 0 ;
}
return ;
}
void update(int rt,int L,int R,int val) //区间更新
{
if(L<=tree[rt].l&&tree[rt].r<=R)
{
tree[rt].lazy = val ;
tree[rt].val = val*tree[rt].len() ;
return ;
}
pushdown(rt) ;
if(L<=mid) update(ll,L,R,val) ;
if(R >mid) update(rr,L,R,val) ;
pushup(rt) ;
return ;
}
int query(int rt,int L,int R)//当前查询的树的节点 [L,R]查询的区间
{
if(L<=tree[rt].l&&tree[rt].r<=R)
return tree[rt].val;
pushdown(rt);//pushdown 操作为区间更新 做的准备。。
int ans = 0 ;
if(L<=mid) ans+=query(ll,L,R);
if(R >mid) ans+=query(rr,L,R);
return ans ;
}
线性变换线段树
所谓线性变换,就是我们的线段树能处理ax+b这种操作。现在线段树的常用操作有add,mul,set无论是哪种我们都可以使用线性变换得到。
add v: 1*x+v
mul v:v*x+0
set v: 0*x+v
主席树(函数式线段树,可持久化线段树)
主席树(函数式线段树,可持久化线段树)其实就是维护多颗线段树,
每更新一个元素,那么就根据它的上一状态新建一颗线段树,然后就是线段树的操作了,
一般来维护(区间第K大,区间不同元素个数(在线做法))
每次新建一颗线段树,都只是开 O(log(n)) 的节点,
然后指向前一状态的其他不需要更新的节点,这样的话大大降低了总空间复杂度主席树的具体维护要看不同情况而定,需要怎么维护就怎么维护即可
主席树一般可以看做维护树与树的前缀和,
int rt[N*20]; //表示更新当前元素所形成的不同线段树的树根,
int ls[N*20]; //当前节点的左儿子
int rs[N*20]; //当前节点的右儿子
int sum[N*20]; //主席树节点维护的值
int tot; //节点的标号
void build(int &rt,int l,int r){ //建树 一般是先建一颗空树(即没有元素更新在其上) 让之后的更新依他开始,
rt=++tot;
sum[rt]=0;
if(l==r) return ;
int m = (r+l)>>1;
build(ls[rt],l,m);
build(rs[rt],m+1,r);
}
void update(int &rt,int l,int r,int last,int pos){
rt = ++tot;
ls[rt]=ls[last];
rs[rt]=rs[last];
sum[rt]=sum[last]+1;
if(l==r) return ;
int m = (r+l)>>1;
if(pos<=m) update(ls[rt],l,m,ls[last],pos);
else update(rs[rt],m+1,r,rs[last],pos);
}
int query(int ss,int tt,int l,int r,int k){
if(l==r)return l;
int m = (l+r)>>1;
int cnt=sum[ls[tt]]-sum[ls[ss]];
if(k<=cnt) return query(ls[ss],ls[tt],l,m,k);
else return query(rs[ss],rs[tt],m+1,r,k-cnt);
}
ST(SparseTable)算法
预处理出ST表 实现 O(1) 查询区间最大/小值的算法.(即RMQ问题)
要求数组是静态的(就是不会有元素更改,删除等操作)ST表其实就是通过倍增的思想,先将一段一段的区间最大/小值处理出来,然后通过O(1)的计算的出所要求的解.
形象一点就是
st[i][j] 表示第i个位置开始长度为 1<<j 的最大最小值,
在预处理的时候我们就能够倍增的求出每个位置的st[][]的值, st[i][j]=max/min(st[][j−1],st[][j−1]);那么这时候每次查询的 [l,r] 就是 因为倍增过来的都是 2n 长度的.那么就可以找到两个同样长度的区间一个是从 l 开始包含
l 向后的区间,另一个是从 r 开始包含r 向前的区间.取二者的 max/min 就可以了.
max/min(st[l][log2(r−l+1)],st[r−log2(r−l+1)+1][log2(r−l+1)])最后一点就是开数组的时候一定是 st[N][log(n)] 不要 st[N][log(n)] 后者容易超时.
代码实现
int st[n][17];
void ST(){
for(int j=1; (1<<j)<=n; j++)
for(int i=0; i+(1<<j)-1<n; i++)
st[i][j]=max(st[i][j-1],st[i+(1<<(j-1))][j-1]);
}
int getST(int l,int r){
int k=(int)(log(r-l+1.0)/log(2.0));
return max(st[l][k],st[r-(1<<k)+1][k]);
}
在求上述的k的时候还有一种线性的预处理的方法,会比取对数快一些,但是有点浪费空间.
void initrmq(int n,int b[]){
mm[0]=-1;
for(int i=1;i<=n;i++)
{
mm[i]=((i&(i-1))==0)?mm[i-1]+1:mm[i-1];
dp[i][0]=b[i];
}
for(int j=1;j<=mm[n];j++)
for(int i=1;i+(1<<j)-1<=n;i++)
dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
int rmq(int x,int y){
int k=mm[y-x+1];
return min(dp[x][k],dp[y-(1<<k)+1][k]);
}
树形结构转化为线形结构
1. dfs序
其实就是从根节点进行搜索,
然后向下dfs遍历树,依次进行编号,
同时能保证子树的编号一定大于父节点的编号,同时借用两个数组, L[_],R[_]
分别表示这个节点 u 的子树的节点编号在(L[u],R[u]),开区间 内。这样在进行对子树 进行的操作的时候 可以借助数据结构 对区间进行查找,
vector<int >G[N];
int cnt = 0;
void dfs(int u){
L[u]=cnt++;
for(int i=0;i<G[u].size();i++) dfs(G[u][i]);
R[u]=cnt;
}
2. 树链剖分
树链剖分是一种将树形结构转化为线性结构的算法
通过两次树的遍历,将树剖分成一个个的[重链],
且对每个节点进行编号,确保一条链上的节点编号连续
这样一来,我们就能通过一个维护区间关系的数据结构来维护树上,属同一个链上的元素在维护两个节点(u,v)的时候即:维护两个节点(u,v)间的元素,
我么从深度大的不断向上维护,最后遍历的位置,两个节点一定在一条链上(且深度小的就是LCA(u,v))
int dep[N]; //每个节点的深度
int fa[N]; //每个节点的父节点
int sz[N]; //每个节点所有的子节点个数(包括自身)
int son[N]; //每个节点的重儿子
void dfs1(int u,int ff,int deep){
son[u]=0;fa[u]=ff;sz[u]=1;dep[u]=deep;
for(int i=head[u];i!=-1;i=G[i].next){
int v=G[i].to;
if(v==ff) continue;
dfs1(v,u,deep+1);
sz[u]+=sz[v];
if(sz[v]>sz[son[u]]) son[u]=v; //重儿子子节点个数大
}
}
int top[N]; //节点所在链上的【根】
int tree[N]; //节点对应在线段树/树状数组的位置
int pre[N]; //在线段树/树状数组的位置对应的节点的标号 (树状数组时一般不需要)
int cnt; //对链上节点编号
void dfs2(int u,int ff){
tree[u]=++cnt;pre[tree[u]]=u;top[u]=ff;
if(son[u]) dfs2(son[u],ff); //先遍历重链
else return ;
for(int i=head[u];i!=-1;i=G[i].next){
int v=G[i].to;
if(v!=fa[u]&&v!=son[u]) dfs2(v,v);
}
}
int findi(int x,int y){
int fx=top[x],fy=top[y];
int ans = 0;
while(fx!=fy){
if(dep[fx]<dep[fy]) myswap(x,y),myswap(fx,fy);
ans+=getSum(tree[x])-getSum(tree[fx]-1); //不断向上维护区间
x=fa[fx],fx=top[x];
}
if(dep[x]>dep[y]) myswap(x,y);
if(x!=y) ans+=getSum(tree[y])-getSum(tree[x]);
return ans ;
}
平衡树
SPLAY
本质还是一个二叉查找树,但是根据树的旋转,能将一些在某种情况下树退化为单链的时候重新旋转为树
这是最好实现的平衡树了,能够实现求区间翻转,前驱,后继,第K大,查找值,插入,删除,合并,分离 等其他二叉查找树能够做到的功能 and so on
学习SPLAY最终要的是先要理解二叉查找树,然后就要理解好伸展,旋转操作就行了,其他操作原理上和普通二叉查找树是一样的
附下个人的SPLAY模板(Bate 1)
SPLAY操作可以在优化,旋转操作可以在优化,各种功能还没有写
int ch[N][2]; //ch[][0] lson ch[][1] rson
int f[N]; //father
int sz[N]; //size
int val[N]; //value
int lazy[N]; //lazy-tag
int rev[N]; //tag of revear
int root; //root of splay-tree
int tot; //tot,total,is the number of node of tree
void update_rev(int x){
if(!x) return ;
swap(ch[x][0],ch[x][1]);
rev[x]^=1;
}
void pushdown(int x){
if(rev[x]){
update_rev(ch[x][0]);
update_rev(ch[x][1]);
rev[x]=0;
}
}
void pushup(int x){
sz[x]=sz[ch[x][0]]+sz[ch[x][1]]+1;
}
void rotate(int x,int k){ // k = 0 左旋, k = 1 右旋
int y=f[x];int z=f[y];
pushdown(y),pushdown(x);
ch[y][!k]=ch[x][k];if(ch[x][k])f[ch[x][k]]=y;
f[x]=z;if(z)ch[z][ch[z][1]==y]=x;
f[y]=x;ch[x][k]=y;
pushup(y);
}
void splay(int x,int goal){
pushdown(x);
while(f[x]!=goal){
int y=f[x];int z=f[y];
if(z==goal){
pushdown(y),pushdown(x);
rotate(x,ch[y][0]==x);
}
else{
pushdown(z),pushdown(y),pushdown(x);
if(ch[z][0]==y){
if(ch[y][0]==x)rotate(y,1),rotate(x,1);
else rotate(x,0),rotate(x,1);
}
else{
if(ch[y][1]==x)rotate(y,0),rotate(x,0);
else rotate(x,1),rotate(x,0);
}
}
}
pushup(x);
if(goal==0) root=x;
}
void build(int &rt,int l,int r,int fa){
if(l>r) return ;
int m = r+l >> 1;
rt = m;
f[rt]=fa;
ch[rt][0]=ch[rt][1]=0;
sz[rt]=1,rev[rt]=0;
build(ch[rt][0],l,m-1,rt);
build(ch[rt][1],m+1,r,rt);
pushup(rt);
}
void init(int n){
root=tot=0;
f[0]=sz[0]=ch[0][0]=ch[0][1]=rev[0]=0;
build(root,1,n,0);
pushup(root);
}
SPLAY
由于SPLAY比较长 所以单独开了一贴