题目链接: http://poj.org/problem?id=2955
———————————.
Brackets
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 6430 Accepted: 3443
Description
We give the following inductive definition of a “regular brackets” sequence:
the empty sequence is a regular brackets sequence,
if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
if a and b are regular brackets sequences, then ab is a regular brackets sequence.
no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6
题目大意:就是问你 整个区间内 不连续的能匹配上的括号的总数
解题思路:
区间DP
dp[i][j] = i~j 区间内能够匹配的括号的个数
很简单 详见代码吧
附本题代码
—————————————-.
//#include <bits/stdc++.h>
#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;
#define lalal puts("*****");
typedef long long LL;
const int MOD = 1000000007;
const int maxn = 200010;
int dp[101][101];
char a[101];
int main()
{
while(scanf("%s",a)!=EOF)
{
memset(dp,0,sizeof(dp));
if(a[0]=='e') break;
int l = strlen(a);
for(int len=1; len<l; len++) //区间的长度
for(int i=0,j=len; j<l; i++,j++) //不同的区间啊
{
if(a[i]=='('&&a[j]==')'||a[i]=='['&&a[j]==']') //如果区间两边能够构成括号的匹配 就+2
dp[i][j]=dp[i+1][j-1]+2;
for(int k=i; k<j; k++) //合并区间啊 维护最大值
dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]);
}
printf("%d\n",dp[0][l-1]);
}
return 0;
}