python调用yolov3模型 批量处理

基于AB专家的代码进行了修改,实现使用Python调用Yolov3模型进行批量处理任务,注意配置参数的设定与添加。
摘要由CSDN通过智能技术生成

修改AB大神的代码

import argparse
import os
import glob
import random
import darknet
import time
import cv2
import numpy as np
import darknet


def parser():
    parser = argparse.ArgumentParser(description="YOLO Object Detection")
    parser.add_argument("--input", type=str, default="",
                        help="image source. It can be a single image, a"
                             "txt with paths to them, or a folder. Image valid"
                             " formats are jpg, jpeg or png."
                             "If no input is given, ")
    parser.add_argument("--batch_size", default=1, type=int,
                        help="number of images to be processed at the same time")
    parser.add_argument("--weights", default="yolov4.weights",
                        help="yolo weights path")
    # parser.add_argument("--dont_show", action='store_true',
    #                     help="windown inference display. For headless systems")
    # parser.add_argument("--ext_output", action='store_true',
    #                     help="display bbox coordinates of detected objects")
    parser.add_argument("--output", default="",
                        help="save detections bbox for each image in yolo format")
    parser.add_argument("--config_file", default="./cfg/yolov4.cfg",
                        help="path to config file")
    parser.add_argument("--data_file", default="./cfg/coco.data",
                        help="path to data file")
    parser.add_argument("--thresh", type=float, default=.25,
                        help="remove detections with lower confidence")
    return parser.parse_args()


def check_arguments_errors(args):
    assert 0 < args.thresh < 1, "Threshold should be a float between zero and one (non-inclusive)"
    if not os.path.exists(args.config_f
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值