线性代数的本质-特征值和特征向量

https://www.bilibili.com/video/av6731067/?p=14

矩阵表示的是一种线性变换,通过基座标的变换来表示。那么在基座标变换的时候,有没有向量在线性变换的时候,没有离开它所张成的空间,只在原向量上拉伸或缩放。

Av=\lambda v,

v称为特征向量,表示v经过A的线性变换后,只是在原来v的基础上数值缩放,方向并没有改变。

\lambda代表缩放的比例,我们称为特征值。

现在我们好奇,为什么要找特征值和特征向量呢,因为我们发现矩阵中的对角矩阵是很容易计算的。

那么什么是对角矩阵,\begin{bmatrix} a&0 \\ 0 & b \end{bmatrix},除了对角线上的元素,其他的都是0,这个矩阵又表示为在基座标下对i,j做a,b缩放的线性变换

如果让你计算100个 \begin{bmatrix} a&0 \\ 0 & b \end{bmatrix}这种线性变换相乘,那么很容易就算出来了就是,\begin{bmatrix} a^{100}&0 \\ 0 & b^{100} \end{bmatrix}  说了这么多,也只是在说对角矩阵方便计算,和特征向量有什么关系。

线性变换使用基变换表示,如果旋转y基坐标,那么空间中很多的向量都会有相应的改变,但是唯独特征向量她的改变只是在缩放,没有离开它所张成的空间,例如x基座标 和(-1,1)这个向量。所以如果我们使用特征向量作为基座标,那么同样的一个线性变换,在新的坐标系下就表示的就是基座标的缩放变换。

例如\begin{bmatrix} 3 &1 \\ 0& 2 \end{bmatrix} 这个线性变换中,要计算100个相乘,怎么做

首先 我们得到特征向量和特征值\begin{bmatrix} 1 & 0 \end{bmatrix} \lambda =3\newline \begin{bmatrix} -1 & 1 \end{bmatrix} \lambda =2 使用特征向量作为新的基向量那么,这个线性变换转换为新坐标系的线性变换就是

\begin{bmatrix} 1 & -1\\ 0& 1 \end{bmatrix}^{-1}\begin{bmatrix} 3 &1 \\ 0& 2 \end{bmatrix}\begin{bmatrix} 1 & -1\\ 0& 1 \end{bmatrix}=\begin{bmatrix} 3 &0 \\ 0&2 \end{bmatrix} 

那么基座标系下的线性变换就变成了新坐标系下的线性变换,而且两个线性变换表示的是同一个变换,那么100个新坐标系的线性变换就很简单就算好了\begin{bmatrix} 3^{100} & 0\\ 0& 2^{100} \end{bmatrix} ,然后再把新坐标系的现象变换变换城基座标系下的线性变换

\begin{bmatrix} 1&-1 \\ 0& 1 \end{bmatrix} \begin{bmatrix} 3^{100}&0 \\ 0 & 2^{100} \end{bmatrix} \begin{bmatrix} 1&-1 \\ 0& 1 \end{bmatrix}^{-1}=\begin{bmatrix} 3^{100}&3^{100}-2^{100} \\ 0 &2^{100} \end{bmatrix}

特征向量是不是很有用!!!!!

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值