bzoj 1022: [SHOI2008]小约翰的游戏John 博弈论

题意

Nim游戏改编版,取到最后一个石子的人算输。

分析

如果全是1的话则特判。
假设其中一堆石子个数大于1,:
设sum=所有石子的异或和
若剩下两堆相同且不为1的石子,那么后手必胜。
若sum==0则必然可以转换成上述状态,则后手必胜。
我也不知道为什么。。。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

int main()
{
    int T;
    scanf("%d",&T);
    while (T--)
    {
        int n;
        scanf("%d",&n);
        int flag=0,sum=0;
        for (int i=1;i<=n;i++)
        {
            int x;
            scanf("%d",&x);
            if (x>1) flag=1;
            sum^=x;
        }
        if (flag) 
        {
            if (sum) printf("John\n");
            else printf("Brother\n");
        }
        else
        {
            if (sum) printf("Brother\n");
            else printf("John\n");
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值