U-Net

论文地址:https://arxiv.org/abs/1505.04597v1
项目地址:https://github.com/zhixuhao/unet
            or https://github.com/jakeret/tf_unet

1. 论文背景

深度卷积网络应用在医学任务上最大的问题就是训练数据过少,于是Ciresan等人在滑动窗口设置中训练网络,通过在该像素周围提供局部区域(patch)来预测每个像素的类别标签。
论文中原话: Ciresan et al. trained a network in a sliding-window setup to predict the class label of each pixel by providing a local region (patch) around that pixel as input.
参考论文:Deep neural networks segment neuronal membranes in electron microscopy images
但是这种方法存在两个缺点:

  1. 训练速度慢。因为该网络必须对每个patch分开训练,并且重叠区域造成大量冗余计算。
  2. trade-off:该网络需要在定位准确率与上下文语义之间进行权衡。

2. 论文亮点

U-Net能够在很少的训练数据的情况下取得很好的分割效果。我认为归功于以下几点:

  1. symmetric architecture
  2. Overlap-tile strategy
  3. Loss function

3. 论文细节

3.1 为什么采用对称的U形结构?

在这里插入图片描述

注:U-Net 简洁地描述为四个降采样层与四个上采样层。
再看看FCN结构
在这里插入图片描述
与U-Net相比,FCN只是做了一次上采样,然后拿Pool3、Pool4作融合fusing(Add)。而U-Net进行了四次上采样,将每个上采样部分与每个之前的高分辨层作连接(Concatenation)。这样就产生了大量的特征图,产生了更多更丰富的语义信息。

3.2 Overlap-tile strategy

在这里插入图片描述
对于边界区域的像素采用镜像推断的方式进行邻域补充,即对称补充。
Overlap-tile strategy策略的思想:(1)对图像的某一块像素点(黄框内部分)进行预测时,需要该图像块周围的像素点(蓝色框内)提供上下文信息(context),以获得更准确的预测。(2)对原始图像分patch预测,即使这样会造成重叠。
那么为什么这种 Overlap-tile strategy能够实现在任意大地图像上进行无缝分割?
先看看原文表述
在这里插入图片描述

这里有一个疑问:only uses the valid part of each convolution 指什么?

现就这个问题说说我的理解,也希望各位大牛在评论区指正一下我的理解。
文中说,分割得到的特征图只包含输入图片中能找到的,那么指黄色区域还是蓝色区域呢? 另外,该采样方法是如何解决重叠导致的计算耗时的问题呢?我认为最后结果分割结果只保留黄色区域,而不对黄色区域外蓝色区域内作任何处理。

3.3 Weighted Loss

作者采用了一种加权loss,是对 pixel-wise softmax 与 cross entropy loss function 的结合(关于这两种损失函数参见文章)。
在这里插入图片描述
在这里插入图片描述
注:l(x)表示位置x的true label,显然这个函数就是希望pl(x)(x)接近1。
那么w(x)是什么呢?
在这里插入图片描述
where wc : Ω → R is the weight map to balance the class frequencies, w0 = 10.
如何理解这个式子呢?
这个式子主要目的是学习 the separation border of touching objects of the same class。
看下图
在这里插入图片描述
红点到第一近的细胞与第二近的细胞的距离和的平方最小,因此w(x)最大,所以损失函数在学习的时候更容易学到边界上与边界附近的点。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值