TensorRT笔记(6)以混合精度工作

本文详细介绍了如何在TensorRT中使用C++和Python API进行混合精度工作,包括启用FP16、INT8推理,以及INT8校准和动态范围设置。混合精度可以减少内存使用,提高性能,并利用Tensor Core加速计算。
摘要由CSDN通过智能技术生成

5.以混合精度工作

混合精度是计算方法中不同数值精度的组合使用。 NVIDIA®TensorRT™可以32位浮点,16位浮点或量化的8位整数存储权重和激活,并执行图层。
使用低于FP32的精度会减少内存使用量,从而可以部署更大的网络。 数据传输花费的时间更少,并且计算性能得到提高,尤其是在具有Tensor Core支持该精度的GPU上。

默认情况下,TensorRT使用FP32推理,但它也支持FP16和INT8。 在运行FP16推理时,它将自动将FP32权重转换为FP16权重。

您可以使用以下API在平台上检查支持的精度:

if (builder->platformHasFastFp16()) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yhwang-hub

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值