回归问题和分类问题的本质区别

回归问题关注预测值与真实值的距离,通常使用均方误差最小化。分类问题则聚焦最大化准确率或使概率分布接近,常用交叉熵。分类问题不直接回归因梯度问题可能导致模型不更新或不连续。Logistic回归实际是分类任务,因概率预测有回归意味。交叉熵用于衡量分布差异,二分类问题交叉熵公式避免了梯度问题,优于MSE。
摘要由CSDN通过智能技术生成

回归问题和分类问题的本质区别

回归问题:

目标: 预测值 = 真实值

方法: 最小化 dist(预测值, 真实值) ,这里的dist一般指的是均方误差,即二范数的平方。

分类问题:

目标: 最大化 benchmark, 例如,accuracy

方法1: 最小化 dist(p_theta(y|x), p_r(y|x))

方法2: 最小化 divergence(p_theta(y|x), p_r(y|x)), 其目的是为了让两个概率分布更加接近。

为什么分类问题不直接对目标进行回归??

首先,假设一个二分类问题,大于0.5就是1,小于0.5就是0,。如果对accuracy进行maximize,那么会出现以下两个问题:

issues1: 如果我的accuracy值计算出来是0.6,其中有一个x对应的label是1,但是预测输出的概率为0.4,label值为0,此时更新通过更新梯度,使得输出的概率值为0.45,使其输出分布更加接近于真实的概率分布,但是其输出的label的值并没有改变,还是0,于是我的accuracy并不会变化,这就导致了梯度为0,于是后面就不会再进行更新,即,我的权重改变了,但是我的梯度并没有改变。

gradient = 0, if accuracy unchanged but weights changed

issues2:同上假设,假设误分类中输出有一个概率是0.499,那么只要权重的值有一点点的增加,概率变为0.501,大于0.5,于是输出的accuracy的值从0.6会跳变到0.8,会导致梯度的不连续。

gradient not continuous since the number of correct is not continuous

为什么叫做logistic 回归 (其实就是分类问题)??

一方面,我们对分类问题输出的结果是一系列概率值,如果使用MSE(均方误差函数)对概率值,例如0.7,和0,1标签值,例如,标签值为1,计算loss,则有那么一点点回归的意思,即从0.7 --> 1。所以也可以称作回归。

另一方面,如果是cross entropy, 一般称为分类问题。

因此,一般对于二分类问题,如果最后的使用的是MSE进行回归那么可以说这是一个回归问题。对于多分类问题需要满足两个约束:1,每一个概率值必须是0~1之间;2,所有的概率值之和为1。

输出的logits 会经过softmax函数enlarge the larger ,使用的损失函数通常是cross entropy,所以这才是人们所说的真正意义上的分类问题。

交叉熵 Entropy

熵越小,说明精喜度越高,也就是信息量越大,熵越大,就表示没有什么信息。

Entropy定义为:
E n t r o p y = − ∑ i P ( i ) l o g P ( i ) Entropy = -\sum_{i}P(i)logP(i) Entropy=i<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值