AMD RDNA3 GPU架构解析


如果你对AMD的RDNA3还不了解,在profile过程中的指标无法完全理解一些指标,比如说你听过着色器性能方面指标"occupancy",听说它有助于隐藏内存 latency,但不理解其中的具体用法,那这篇文章将对你有一些帮助。本文会通过把AMD的RDNA3架构为例比喻为施工公司工作模式,深入理解GPU如何高效处理顶点着色、像素计算等任务。


一、施工公司的组织架构

1. 施工公司(WGP)与施工队(CU)

  • WGP(Work Group Processor):相当于一个大型施工公司,负责统筹管理两个施工队。
  • CU(Compute Unit):每个WGP下属的两个施工队。
  • SIMD模式:每个施工队会有两个小分队,小分队采用“批量施工”模式——比如挖土就所有点位一起挖土,倒混凝土就全部一起倒混凝土,铺钢筋就一起铺钢筋,即使有的点位提前完成了挖土,也要等其他的点位都完成才能倒混凝土(这就是Single Instruction Multiple Data (SIMD),单指令多数据架构——每个线程各自处理一个顶点或者像素,执行相同的指令,但是处理不同的数据)。

2. 施工队的工作术语

  • Wave32和Wave64
    基于SIMD模式,施工小分队的工作要么32点位一组一起干,或者64点位为一组一起干(wave32/wave64,即32线程一组或者64线程一组)。也就是wave32和wave64。

    • Wave32模式:32个点位(线程)为一组,适合复杂任务(如分支判断多的场景)。
    • Wave64模式:64个点位为一组,适合简单重复任务(如大规模矩阵计算)。
  • wavefront

    • 如果施工小分队只有一个任务,那当这个任务中发生等待材料送达、等待水泥这些情况的时候,就会浪费时间。所以施工队会做多个 任务。每一个任务称作一个wavefront。
    • 每个施工队会做多少个任务要看资源的情况。
    • 同一时刻一个施工小分队只能执行一个任务。
    • 每个施工队最多做16个任务。
    • 任务不必按顺序执行,也不需要连续地执行完一个任务中的所有步骤。
  • 任务相当于RDNA3的wavefront 的概念,wavefront 类似于 NVIDIA 的 warp,都是GPU调度和执行的基本单位。每个 wavefront 包含多个线程,通常是32个。这些线程在同一个指令下同步执行,换句话说,同一个 wavefront 中的线程会执行相同的指令,但处理不同的数据。
  • 一个着色器在SIMD上运行所需的资源量是在编译时评估好的,一般来说,资源指的是:VGPR(Vector General Purpose Registers,向量通用寄存器)、SGPR(Scalar General Purpose Registers,标量通用寄存器)和称为LDS(Local Data Share,本地数据共享)的“groupshared”内存
  • RDNA 3则每个SIMD有16个slot
  • 一个SIMD上一次只能执行一个wavefront
  • 分配的这些wavefront不必按顺序执行,也不需要连续地执行完一个wavefront的所有指令)

二、任务分配的核心逻辑

1. 自动组队:隐式并行化

  • 顶点/像素处理:当GPU需要顶点或800万像素,比如说绘制三角形,那么顶点着色器处理3个顶点;如果渲染4K画面,那么片段着色器需要处理830万像素。不管是3个顶点还是830万像素,硬件都会自动将它们打包:
    • 每凑满32或64个点位,就分配给一个小分队。
    • 程序员无需手动分组,完全由硬件和驱动自动完成。
  • 计算着色器例外:compute shader需显式指定线程组大小(如[numthreads(64,1,1)]),这是唯一需要程序员干预的场景。

2. 分组规模的选择依据

  • 编译器与驱动的幕后优化
    • 分支复杂任务(如光线追踪中的条件判断):优先选择Wave32模式,减少分支等待时间。
    • 计算密集型任务(如纹理生成):采用Wave64模式,最大化吞吐量。
  • 程序员无需干预:优化过程完全由编译器和驱动根据代码特征自动完成。

三、资源管理:施工队的“生存法则”

1. 资源分类

资源类型比喻技术对应容量限制(数字不一定准确)特性
ALU施工工人算术逻辑单元32个每SIMD同一时间只服务一个Wavefront
SGPR公共工作手册标量寄存器(常量、全局变量)1024个每SIMD全队共享,内容统一
VGPR各个施工点位工具箱向量寄存器(线程私有变量)2048个每SIMD每个线程独立占用,限制分队数量
LDS公司内部仓库本地数据存储(线程组共享内存)128KB每WGP仅限本WGP使用,跨公司不可共享

2. SIMD32和VALU的关系

  • 硬件实现:每个SIMD32 对应 32个物理VALU阵列
    • 例如:v_mov_b32 或者v_add_f32 指令会在SIMD32单元内同时修改32个work-item的VGPR
    • 指令举例:
    v_add_f32 v0, v1, v2 // 该指令在32个VALU上并行执行
    
  • VALU是GPU核心计算资源
    • 作用:VALU全程Vector Arithmetic Logic Unit,用来处理每个work-item的独立数据。
    • 典型场景:顶点坐标变换、像素颜色计算、物理模拟中的粒子位置更新。
    • 特点:通过SIMD实现大规模并行。

3. VGPR容量限制

每个SIMD32可驻留的wavefront数量由以下公式决定:
Max Wavefronts/SIMD = ⌊ Total VGPRs VGPRs/Wave × 32 ⌋ \text{Max Wavefronts/SIMD} = \left\lfloor \frac{\text{Total VGPRs}}{\text{VGPRs/Wave} \times 32} \right\rfloor Max Wavefronts/SIMD=VGPRs/Wave×32Total VGPRs 示例

  • 假设Shader需要64 VGPRs/work-item
  • 每个SIMD32的VGPR总量为2,048
  • 则每个SIMD32最多容纳:
    ⌊ 2048 ÷ ( 64 × 32 ) ⌋ = ⌊ 2048 ÷ 2048 ⌋ = 1 \lfloor 2048 ÷ (64×32) \rfloor = \lfloor 2048÷2048 \rfloor = 1 2048÷(64×32)⌋=2048÷2048=1 wavefront

4. LDS容量限制

每个work-group的LDS分配会约束wavefront调度:

// 示例:光线追踪Shader的LDS使用
shared float3 local_positions[256]; // 占用256×12B=3KB

四、优化手段

1.减少VGPR占用

  • 复用寄存器变量,避免冗余存储。
  • 示例:将临时计算结果直接用于下一阶段,而非创建新变量。

2.规避分支发散

  • 用掩码运算替代条件分支(如 result = a * mask + b * (1 - mask))。
  • 统一控制流:尽量让所有线程走相同逻辑路径。

3. LDS的智慧使用

  • 高频访问数据预加载到LDS(如粒子系统的位置信息)。
  • 避免单个线程组占用超过50% LDS容量。

4. 工具辅助分析

  • 使用 Radeon GPU Profiler 监控Occupancy和资源瓶颈。
  • 关注编译器警告(如VGPR/LDS超额分配提示)。

五、RGP 性能指标

1. wavefront特性回顾

  • wavefront 是GPU调度和执行的基本单位。
  • 每个 wavefront 包含多个线程,通常是32个,同一个 wavefront 中的线程会执行相同的指令,但处理不同的数据。
  • RDNA3的每个SIMD有16个wavefront slot。
  • 一个SIMD上一次只能执行一个wavefront。
  • 一个SIMD上的这些wavefront不必按顺序执行,也不需要连续地执行完一个wavefront的所有指令。

2. latency

  • latency 的产生过程:GPU在一个SIMD选中了一个wavefront A,开始执行一些ALU计算,执行的过程中wavefront A需要从内存中获取数据(例如对纹理进行采样)。根据最近是否访问过这个数据,这个需求可能会经过整个缓存层次结构,最终到达主内存(memory)然后才返回,这个过程可能需要数百个时钟周期,如果这个SIMD单元中没有其他wavefront在运行,那这个SIMD单元只能等待wavefront A的数据返回,期间会处于空闲状态,浪费计算资源。然而,如果有多个正在执行的wavefront,GPU可以在wavefront A等待数据的时候,立即切换到另一个wavefront,比如wavefront B,并开始执行wavefront B的任务。最好的情况就是wavefront B刚好需要先执行一些ALU计算然后再去在内存中获取数据。这样一来,wavefront B花费的在执行ALU计算的时钟周期,正好可以隐藏wavefront A为了获取数据而带来的等待,称为隐藏了这个latency。如果有SIMD中有足够多的wavefront交替运行执行ALU计算和内存访问操作,SIMD单元就可以始终有活干,几乎不会空闲,几乎没有算力浪费。

3. Occupancy

  • latency 的度量指标:Occupancy是已分配的wavefront数量与最大可用slot之间的比率。从RDNA2开始,对于单个SIMD,Occupancy = 已分配的wavefront数量除以16。举个例子,如果一个SIMD中有4个正在运行的wavefront,那么Occupancy就是4 / 16 = 25%。所以Occupancy也可以解释为SIMD隐藏latency 的能力:occupancy越大,隐藏latency 的能力越好:如果occupancy是1 / 16,这意味着如果wavefront必须等待某些内容, latency 将无法被隐藏,因为没有其他wavefront被分配给这个SIMD。如果只看隐藏latency的能力,一个SIMD的occupancy最理想的情况是16 / 16。
  • RGP中查看Occupancy:RGP中可以查看occupancy的理论值以及实际测量值。
  • occupancy的理论值:用于判断occupancy会受到什么资源的限制:比如受VGPR的限制或者LDS的限制。同时RGP也会告诉你需要节约出多少资源才能够多分配一个wave。
    - occupancy的实际测量值:occupancy的理论值是实际测量值的上限,如果实际测量无法达到理论值,则可以判断,要么没有足够的工作来填满所有的slot,要么GPU无法快速启动这些wavefront 。

结语:GPU高效的本质


以上“施工公司模式”的类比中,需要揣摩GPU高并行,或者说RDNA3架构的两大核心思想:

  1. 极致的批量操作(SIMD):同步性换取吞吐量。
  2. 精明的资源复用:通过快速切换Wavefront隐藏延迟。
内容概要:本文档《ccnp_300-430.pdf》涵盖了与Cisco无线网络配置相关的多个选择题及其答案解析。文档详细探讨了FlexConnect AP在不同模式下的行为、AP模式和子模式的选择、客户端特征配置、图像传输优化、Cisco OEAP配置、QoS设置、多播配置、安全措施(如入侵保护、恶意AP检测)、位置服务配置以及BYOD策略实施等内容。文档不仅提供了具体的配置命令和选项,还解释了每种配置背后的逻辑和技术原理。 适合人群:具备一定网络基础知识,特别是对Cisco无线网络设备有一定了解的技术人员,包括但不限于网络管理员、无线网络工程师和CCNP认证考生。 使用场景及目标: ① 为无线网络工程师提供实际操作指导,确保在不同场景下正确配置Cisco无线设备; ② 帮助CCNP认证考生复习并掌握相关知识点; ③ 协助IT管理员解决日常无线网络管理中的常见问题,如连接不稳定、性能不佳或安全性问题; ④ 支持企业IT部门制定和实施BYOD策略,确保员工个人设备接入公司网络的安全性和效率。 阅读建议:由于文档内容较为专业且技术性强,建议读者首先熟悉Cisco无线网络的基本概念和术语。在阅读过程中,应结合具体的工作环境和需求进行理解,并尝试将所学知识应用到实际工作中。对于不熟悉的术语或配置命令,可以通过查阅官方文档或在线资源进一步学习。此外,通过模拟环境练习配置也是巩固知识的有效方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值