Q Learning概念、更新、代码实现

学习过程来自莫烦大神的视频:
https://www.bilibili.com/video/BV13W411Y75P?p=5

1. 什么是Q Learning?

  • Q Learning 是一种决策过程
  • Q Learning 是一个offline学习过程
  • 存在以下的概念:
    1. 当前智能体的状态:S(state)
    2. 动作行为:A(action)
    3. 行为价值表:Q表(Q表存储了每一个状态下,每一个动作A的价值),如下:
a1a2
s101
s2-1-2
sn0.5670.433

这样我们就可以通过训练,不断更新Q表中每个状态下每个动作的取值,在决策时按图索骥,根据当前状态选择价值最高的动作(maxQ)。

2. Q表是如何更新的?

在这里插入图片描述

  1. 先看图中左下角的Q表,假设我们当前在状态s1,动作a1和a2的价值可以用Q(s1, a1)和Q(s1, a2)表示,由图中可知Q(s1, a2)更大,所以选择动作a2,进入状态s2。
  2. 我们进入状态s2后,会得到环境的反馈R,我们可以根据R以及当前Q表的值,计算出状态s2的现实价值,也就是图中的 Q(s1, a2)现实=R + γ*maxQ(s2),其中gamma是一个系数(未来奖励的衰减值),maxQ(s2)是状态s2下最大的价值取值(图中可知为2)。我们这个式子叫做Q现实
  3. 我们进入状态s2的原因是从当前状态估计,选择动作a2的价值最大,我们把Q(s1, a2)叫做Q估计
  4. 我们选择了动作a2,得到了环境的反馈R,就要更新Q表,更新依据是现实和估计的差距,也就是图中的 新Q(s1, a2) = 老Q(s1, a2) + α*差距 ,其中alpha是系数(学习效率)。
  5. 关于γ(未来奖励的衰减值)的取值可以参考线面这幅图,图中是将状态s不断用后面的状态表示。  
    在这里插入图片描述

3. Q Learning伪代码

随机初始化Q(s, a)表格;
Repeat (for each episode):
    初始化状态s;
    Repeat (for each step of episode):
        依据某种策略,从Q表中根据当前状态s,选择一个动作a;
        执行动作a,进入状态s',获得环境反馈r;
        // 【根据"Q现实"和"Q估计"更新Q(s, a)】
        Q(s, a) = Q(s, a) + α * [r + γ * maxQ(s') - Q(s, a)];
        // Q(s, a) = (1 - α) * Q(s, a) + α * [r + γ * maxQ(s')];
        将当前状态更新为s';
    until s is terminal

4. Q Learning简单实现:1维探索者例子

效果如下:
在这里插入图片描述

代码如下:

# Q-learning 寻找宝藏

import numpy as np
import pandas as pd
import time

# 随机数种子,使得每次生成的随机数相同
# 设置随机数种子可以使每一次生成随机数据的时候结果相同,不设置随机数种子结果造成每一次生成数据都不相同。
# np.random.seed(2)   # reproducible(可重复的)

# global variables 全局变量
N_STATES = 6        # 状态的数量,线性世界的长度
ACTIONS = ['left', 'right']         # available actions
EPSILON = 0.9       # greedy policy,90%的时候选择最优动作,10%的时候选择随机动作
ALPHA = 0.1     # learning rate
LAMBDA = 0.9        # discount factor,(记忆中利益的衰减值),未来奖励的衰减值
MAX_EPISODES = 13       # maximum episodes, 只训练13个回合
FRESH_TIME = 0.1        # fresh time for one move


# 1. 初始化建立 Q-table
def build_q_table(n_states, actions):
    table = pd.DataFrame(
        np.zeros((n_states, len(actions))),     # q_table initial values
        columns=actions,        # action's name
    )
    # print(table)
    return table

# 2. 选择动作
def choose_action(state, q_table):
    # this is how to choose an action
    state_actions = q_table.iloc[state, :]
    # np.random.uniform 从一个均匀分布中随机采样,默认是0~1,可以指定np.random.uniform(low, high)
    if(np.random.uniform() > EPSILON  or state_actions[0] == state_actions[1]):
        action_name = np.random.choice(ACTIONS)
    else:
        action_name = state_actions.idxmax()        # idxmax 替换 argmax (idx可以理解为index)
                # FutureWarning: 'argmax' is deprecated, use 'idxmax' instead. The behavior of 'argmax'
                # will be corrected to return the positional maximum in the future.
    return action_name

# 3. 状态转换和回报函数
def get_env_feedback(S, A):
    # This is how agent will interact with the environment
    if A == 'right':
        if S == N_STATES - 2:
            S = 'terminal'
            R = 1
        else:
            S = S + 1
            R = 0
    else:
        R = 0
        if S == 0:
            S = S
        else:
            S = S - 1
    return S, R

# 4. 环境可视化
def update_env(S, episode, step_counter):
    # This is how environment be updated
    env_list = ['-']*(N_STATES - 1) + ['T']
    if S == 'terminal':
        interaction = '\rEpisode: ' + str(episode+1) + ' total_steps: ' + str(step_counter) + ' EPSILON: ' + str(EPSILON) 
        print(interaction)
    else:
        env_list[int(S)] = 'o'
        interaction = ''.join(env_list)
        print('\r',interaction)
        time.sleep(FRESH_TIME)

# 5. 创建主循环
def reinforcement_learning():
    
    # The main part of RL loop
    q_table = build_q_table(N_STATES, ACTIONS)
    # 为了能在函数内部修改全局变量 所以要先用global关键词声明
    global EPSILON
    
    for episode in range(MAX_EPISODES):
        step_counter = 0
        S = 0       # now state 初始位置
        is_terminated = False
        update_env(S, episode, step_counter)        # init environment
        while not is_terminated:
            A = choose_action(S, q_table)
            S_, R = get_env_feedback(S, A)
            q_predict = q_table.ix[S, A]        # Q估计
            if S_ != 'terminal':
               q_target = R + LAMBDA*q_table.ix[S_,:].max()     # Q现实
            else:
                q_target = R
                is_terminated = True 
            q_table.ix[S, A] = (1-ALPHA) * q_predict + ALPHA * (q_target)
            S = S_
            
            step_counter += 1
            update_env(S, episode, step_counter)  # 更新环境
        EPSILON += 0.005
    return q_table

# 6. 入口函数
if __name__ == '__main__':
    
    q_table = reinforcement_learning()
    print('\r\n', q_table)
  • 7
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
抱歉,我是一名语言模型AI,不具备生成代码的能力。但可以提供一些Q-learning和多智能体强化学习方面的概念算法示例。 Q-learning是一种强化学习算法,用于训练智能体在不知道环境模型的情况下进行决策,该算法通过更新一个Q值函数来优化智能体的策略。Q值表示在某个状态下采取某个动作所能获得的期望奖励,Q值函数通过采取一系列随机动作并观察奖励值从而进行学习更新。 多智能体强化学习是指多个智能体同时在共享环境下进行学习和交互的一种学习方法。在多智能体学习中,智能体需要考虑其他智能体的行为对其决策的影响,可以基于Q-learning算法进行训练。 一个基于Q-learning的多智能体强化学习算法的python示例可以参考如下代码: ```python import random import numpy as np class QLearning: def __init__(self, actions, alpha=0.1, gamma=0.9, epsilon=0.1): self.actions = actions self.alpha = alpha self.gamma = gamma self.epsilon = epsilon self.q_table = {} def get_q_value(self, state, action): if state not in self.q_table: self.q_table[state] = np.zeros(len(self.actions)) return self.q_table[state][action] def choose_action(self, state): if np.random.uniform() > self.epsilon: action = np.argmax(self.q_table[state]) else: action = np.random.choice(self.actions) return action def update(self, state, action, reward, next_state): q_value = self.get_q_value(state, action) next_q_value = self.get_q_value(next_state, np.argmax(self.q_table[next_state])) td_error = reward + self.gamma * next_q_value - q_value self.q_table[state][action] += self.alpha * td_error class Agent: def __init__(self, actions): self.actions = actions self.q_learning = QLearning(self.actions) def act(self, state): return self.q_learning.choose_action(str(state)) def learn(self, state, action, reward, next_state): self.q_learning.update(str(state), action, reward, str(next_state)) class Environment: def __init__(self, agents, num_steps=1000): self.agents = agents self.num_steps = num_steps def step(self, state): actions = [agent.act(state) for agent in self.agents] next_state, reward = simulate_environment(state, actions) for i, agent in enumerate(self.agents): agent.learn(state, actions[i], reward[i], next_state) return next_state, reward def run(self, state): for i in range(self.num_steps): state, reward = self.step(state) print(f"Step {i}: State {state} has reward {reward}") def simulate_environment(state, actions): next_state = [state[i] + actions[i] for i in range(len(actions))] reward = [calculate_reward(next_state[i]) for i in range(len(actions))] return next_state, reward def calculate_reward(state): # calculate reward pass if __name__ == "__main__": # define environment and agents env = Environment([Agent([0, 1]), Agent([0, -1])]) # run environment env.run([0, 0]) ``` 上述代码中,QLearning类是一个通用的Q-learning算法实现,Agent类是智能体的实现,Environment类是多智能体环境的实现。在run方法中,循环执行step方法,并输出状态和奖励值。simulate_environment函数用于模拟环境,calculate_reward函数用于计算奖励。代码中的环境为一个棋盘,两个智能体在该棋盘上进行学习。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值