Q Learning概念、更新、代码实现

本文介绍了Q Learning的基本概念,强调它是一个离线学习过程,涉及到的状态、动作和Q表更新策略。详细解释了Q表如何根据当前状态、动作、环境反馈和未来奖励的衰减进行更新,并给出了Q Learning的伪代码和一个简单的1维探索者例子的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习过程来自莫烦大神的视频:
https://www.bilibili.com/video/BV13W411Y75P?p=5

1. 什么是Q Learning?

  • Q Learning 是一种决策过程
  • Q Learning 是一个offline学习过程
  • 存在以下的概念:
    1. 当前智能体的状态:S(state)
    2. 动作行为:A(action)
    3. 行为价值表:Q表(Q表存储了每一个状态下,每一个动作A的价值),如下:
a1a2
s101
s2-1-2
sn0.5670.433

这样我们就可以通过训练,不断更新Q表中每个状态下每个动作的取值,在决策时按图索骥,根据当前状态选择价值最高的动作(maxQ)。

2. Q表是如何更新的?

在这里插入图片描述

  1. 先看图中左下角的Q表,假设我们当前在状态s1,动作a1和a2的价值可以用Q(s1, a1)和Q(s1, a2)表示,由图中可知Q(s1, a2)更大,所以选择动作a2,进入状态s2。
  2. 我们进入状态s2后,会得到环境的反馈R,我们可以根据R以及当前Q表的值,计算出状态s2的现实价值,也就是图中的 Q(s1, a2)现实=R + γ*maxQ(s2),其中gamma是一个系数(未来奖励的衰减值),maxQ(s2)是状态s2下最大的价值取值(图中可知为2)。我们这个式子叫做Q现实
  3. 我们进入状态s2的原因是从当前状态估计,选择动作a2的价值最大,我们把Q(s1, a2)叫做Q估计
  4. 我们选择了动作a2,得到了环境的反馈R,就要更新Q表,更新依据是现实和估计的差距,也就是图中的 新Q(s1, a2) = 老Q(s1, a2) + α*差距 ,其中alpha是系数(学习效率)。
  5. 关于γ(未来奖励的衰减值)的取值可以参考线面这幅图,图中是将状态s不断用后面的状态表示。  
    在这里插入图片描述

3. Q Learning伪代码

随机初始化Q(s, a)表格;
Repeat (for each episode):
    初始化状态s;
    Repeat (for each step of episode):
        依据某种策略,从Q表中根据当前状态s,选择一个动作a;
        执行动作a,进入状态s',获得环境反馈r;
        // 【根据"Q现实"和"Q估计"更新Q(s, a)】
        Q(s, a) = Q(s, a) + α * [r + γ * maxQ(s') - Q(s, a)];
        // Q(s, a) = (1 - α) * Q(s, a) + α * [r + γ * maxQ(s')];
        将当前状态更新为s';
    until s is terminal

4. Q Learning简单实现:1维探索者例子

效果如下:
在这里插入图片描述

代码如下:

# Q-learning 寻找宝藏

import numpy as np
import pandas as pd
import time

# 随机数种子,使得每次生成的随机数相同
# 设置随机数种子可以使每一次生成随机数据的时候结果相同,不设置随机数种子结果造成每一次生成数据都不相同。
# np.random.seed(2)   # reproducible(可重复的)

# global variables 全局变量
N_STATES = 6        # 状态的数量,线性世界的长度
ACTIONS = ['left', 'right']         # available actions
EPSILON = 0.9       # greedy policy,90%的时候选择最优动作,10%的时候选择随机动作
ALPHA = 0.1     # learning rate
LAMBDA = 0.9        # discount factor,(记忆中利益的衰减值),未来奖励的衰减值
MAX_EPISODES = 13       # maximum episodes, 只训练13个回合
FRESH_TIME = 0.1        # fresh time for one move


# 1. 初始化建立 Q-table
def build_q_table(n_states, actions):
    table = pd.DataFrame(
        np.zeros((n_states, len(actions))),     # q_table initial values
        columns=actions,        # action's name
    )
    # print(table)
    return table

# 2. 选择动作
def choose_action(state, q_table):
    # this is how to choose an action
    state_actions = q_table.iloc[state, :]
    # np.random.uniform 从一个均匀分布中随机采样,默认是0~1,可以指定np.random.uniform(low, high)
    if(np.random.uniform() > EPSILON  or state_actions[0] == state_actions[1]):
        action_name = np.random.choice(ACTIONS)
    else:
        action_name = state_actions.idxmax()        # idxmax 替换 argmax (idx可以理解为index)
                # FutureWarning: 'argmax' is deprecated, use 'idxmax' instead. The behavior of 'argmax'
                # will be corrected to return the positional maximum in the future.
    return action_name

# 3. 状态转换和回报函数
def get_env_feedback(S, A):
    # This is how agent will interact with the environment
    if A == 'right':
        if S == N_STATES - 2:
            S = 'terminal'
            R = 1
        else:
            S = S + 1
            R = 0
    else:
        R = 0
        if S == 0:
            S = S
        else:
            S = S - 1
    return S, R

# 4. 环境可视化
def update_env(S, episode, step_counter):
    # This is how environment be updated
    env_list = ['-']*(N_STATES - 1) + ['T']
    if S == 'terminal':
        interaction = '\rEpisode: ' + str(episode+1) + ' total_steps: ' + str(step_counter) + ' EPSILON: ' + str(EPSILON) 
        print(interaction)
    else:
        env_list[int(S)] = 'o'
        interaction = ''.join(env_list)
        print('\r',interaction)
        time.sleep(FRESH_TIME)

# 5. 创建主循环
def reinforcement_learning():
    
    # The main part of RL loop
    q_table = build_q_table(N_STATES, ACTIONS)
    # 为了能在函数内部修改全局变量 所以要先用global关键词声明
    global EPSILON
    
    for episode in range(MAX_EPISODES):
        step_counter = 0
        S = 0       # now state 初始位置
        is_terminated = False
        update_env(S, episode, step_counter)        # init environment
        while not is_terminated:
            A = choose_action(S, q_table)
            S_, R = get_env_feedback(S, A)
            q_predict = q_table.ix[S, A]        # Q估计
            if S_ != 'terminal':
               q_target = R + LAMBDA*q_table.ix[S_,:].max()     # Q现实
            else:
                q_target = R
                is_terminated = True 
            q_table.ix[S, A] = (1-ALPHA) * q_predict + ALPHA * (q_target)
            S = S_
            
            step_counter += 1
            update_env(S, episode, step_counter)  # 更新环境
        EPSILON += 0.005
    return q_table

# 6. 入口函数
if __name__ == '__main__':
    
    q_table = reinforcement_learning()
    print('\r\n', q_table)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值