tensorboard查看分布直方图之坑

代码:
import tensorflow as tf

#a = tf.get_variable(“a”,shape=[2,2])
a1=tf.get_variable(“a1”,shape=[100000])
#c = tf.assign_add(a,[[1,1],[1,1]])
c1 = tf.assign_add(a1,tf.ones(100000))
c2=tf.assign(a1,tf.ones(100000))
#d = tf.summary.histogram(“d”,a)
d1 = tf.summary.histogram(“d1”,a1)

#自动管理
merged = tf.summary.merge_all()
#init = tf.global_variables_initializer()

with tf.Session() as sess:
print(sess.run(c2))
writer = tf.summary.FileWriter(“logs”,sess.graph)#将图存入到logs文件中
#sess.run(init)
for i in range(1000):
print(sess.run(c1))
summary = sess.run(merged)
writer.add_summary(summary,i)#写入文件
图像:
在这里插入图片描述
说明:x轴为数值,y轴为循环的次数,z轴为个数。
每一次数组a1里面的每个值得数据都是一样的,真实的分布直方图应该是一条直线,比如第1000次循环时,有100000个数据取值为1001,但tensorboar强制往正态分布拟合。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值