#include<bits/stdc++.h>
using namespace std;
int c,m,n,w[50002],mid,l,r;
bool cha(int now) {
int flag=0,s=0;
for(int i=1;i<=n+1;i++) { //枚举到终点,
if(w[i]-s<now) flag++; //如果点i到起点的距离小于最小位移的最大值(now),移除计数器加一;
else s=w[i]; //如果点i到起点的距离已经超过now,更新起点(s);
}
return (flag>m)?false:true; //如果计数器大于限制,返回FALSE;
}
int main() {
scanf("%d%d%d",&c,&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&w[i]);
l=1;r=c;w[n+1]=c;
while(l+1<r) { //保证l小于r;如果去掉1,l就会无限循环。因为整除采取去尾制,当l和r相差为一时,mid会等于l,导致l无法正常更新。
mid=((l+r+1)/2); //更新mid;
if(cha(mid)==false) r=mid; //如果mid错了,就一定是大了,更新r,使mid变小。
else l=mid; //如果mid符合,就可能是小了,更新l,使mid变大。
} //当l>=r时;r会不断地向l接近最终l=r-1。
if(cha(r)) l=r; //如果r满足,当且仅当无中间点,此时最终结果为r;
printf("%d",l); //l为正解,理由同16行。
return 0;
}
二分查找模版题。
二分查找类似于数学里的二分法。
模板
如下:
while(l+1 < r) {
mid = (l + r + 1)/2;
if(!judge(r)) r = mid;
else l = mid;
}
if (judge(r)) l = r;
思想
就是不断地二分查找并验证真伪,再不断地缩小范围,直到得到正解。
使用条件
1,满足单调性。因为二分需要有序。
2,答案易验证。
其实基本上是思想的推理。
扯淡
就这些,总的来说是一个比较简单的东西。但它是个辅助型算法。因此会跟其他问题综合起来,因此显得比较重要。