数据结构实验图论一:基于邻接矩阵的广度优先搜索遍历
Time Limit: 1000MS
Memory Limit: 65536KB
Problem Description
给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列。(同一个结点的同层邻接点,节点编号小的优先遍历)
Input
输入第一行为整数n(0< n <100),表示数据的组数。
对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。
下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。
下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
Output
输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示BFS的遍历结果。
Example Input
1 6 7 0 0 3 0 4 1 4 1 5 2 3 2 4 3 5
Example Output
0 3 4 2 5 1
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN=100+10;
int n,m,s;
bool vis[MAXN];
bool tu[MAXN][MAXN];
void bfs(int s)
{
memset(vis,0,sizeof(vis));
int q[110];
int head=0,tail=0;
vis[s]=1;
q[tail++]=s;
while(head<tail)
{
int k=q[head++];
printf("%d ",k);
for(int i=0;i<n;++i)
{
if(!vis[i]&&tu[k][i])
{
vis[i]=1;
q[tail++]=i;
}
}
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&s);
memset(tu,0,sizeof(tu));
int u,v;
for(int i=0;i<m;++i)
{
scanf("%d%d",&u,&v);
tu[u][v]=tu[v][u]=1;
}
bfs(s);
puts("");
}
return 0;
}