将一系列给定数字顺序插入一个初始为空的二叉搜索树(定义为左子树键值大,右子树键值小),你需要判断最后的树是否一棵完全二叉树,并且给出其层序遍历的结果。
输入格式:
输入第一行给出一个不超过20的正整数N
;第二行给出N
个互不相同的正整数,其间以空格分隔。
输出格式:
将输入的N
个正整数顺序插入一个初始为空的二叉搜索树。在第一行中输出结果树的层序遍历结果,数字间以1个空格分隔,行的首尾不得有多余空格。第二行输出YES
,如果该树是完全二叉树;否则输出NO
。
输入样例1:
9
38 45 42 24 58 30 67 12 51
输出样例1:
38 45 24 58 42 30 12 67 51
YES
输入样例2:
8
38 24 12 45 58 67 42 51
输出样例2:
38 45 24 58 42 12 67 51
NO
建树很简单,判断是不是完全二叉树,就是h-1层都是满的,然后剩余的都挂在左子树上。
也就是说如果你像堆那样给结点标号,那么完全二叉树应该是正好占满这1到n的。
所以判断的时候我们给标号,然后看看最大的编号是不是==n即可。
#include <bits/stdc++.h>
using namespace std;
const int MAXN=40;
int n,m;
int ans[MAXN];
struct node
{
int key;
int d;
struct node*l,*r;
node()
{
l=r=NULL;
}
};
void build_tree(struct node*&root,int x)
{
if(!root)
{
root=new node();
root->key=x;
return ;
}
if(x>root->key)build_tree(root->l,x);
else build_tree(root->r,x);
}
int cnt;
int flag=1;
int h;
void print(struct node*root)
{
if(!root)return;
queue<node*>q;
q.push(root);
while(!q.empty())
{
node *k=q.front();
q.pop();
ans[cnt++]=k->key;
if(k->l)q.push(k->l);
if(k->r)q.push(k->r);
flag=max(flag,k->d);
}
}
void get_num(struct node*root,int x)
{
root->d=x;
if(root->l)get_num(root->l,x<<1);
if(root->r)get_num(root->r,x<<1|1);
}
int main()
{
scanf("%d",&n);
int x;
struct node*root=NULL;
for(int i=0;i<n;++i)
{
scanf("%d",&x);
build_tree(root,x);
}
cnt=0;
get_num(root,1);
print(root);
for(int i=0;i<cnt-1;++i)
{
printf("%d ",ans[i]);
}
printf("%d\n",ans[cnt-1]);
if(flag>n)puts("NO");
else puts("YES");
return 0;
}