14 是否完全二叉搜索树

将一系列给定数字顺序插入一个初始为空的二叉搜索树(定义为左子树键值大,右子树键值小),你需要判断最后的树是否一棵完全二叉树,并且给出其层序遍历的结果。

输入格式:

输入第一行给出一个不超过20的正整数N;第二行给出N个互不相同的正整数,其间以空格分隔。

输出格式:

将输入的N个正整数顺序插入一个初始为空的二叉搜索树。在第一行中输出结果树的层序遍历结果,数字间以1个空格分隔,行的首尾不得有多余空格。第二行输出YES,如果该树是完全二叉树;否则输出NO

输入样例1:

9
38 45 42 24 58 30 67 12 51

输出样例1:

38 45 24 58 42 30 12 67 51
YES

输入样例2:

8
38 24 12 45 58 67 42 51

输出样例2:

38 45 24 58 42 12 67 51
NO

建树很简单,判断是不是完全二叉树,就是h-1层都是满的,然后剩余的都挂在左子树上。

也就是说如果你像堆那样给结点标号,那么完全二叉树应该是正好占满这1到n的。

所以判断的时候我们给标号,然后看看最大的编号是不是==n即可。

#include <bits/stdc++.h>

using namespace std;
const int MAXN=40;
int n,m;
int ans[MAXN];
struct node
{
    int key;
    int d;
    struct node*l,*r;
    node()
    {
        l=r=NULL;
    }
};
void build_tree(struct node*&root,int x)
{
    if(!root)
    {
        root=new node();
        root->key=x;
        return ;
    }
    if(x>root->key)build_tree(root->l,x);
    else build_tree(root->r,x);
}
int cnt;
int flag=1;
int h;
void print(struct node*root)
{
    if(!root)return;
    queue<node*>q;
    q.push(root);
    while(!q.empty())
    {
        node *k=q.front();
        q.pop();
        ans[cnt++]=k->key;
        if(k->l)q.push(k->l);
        if(k->r)q.push(k->r);
        flag=max(flag,k->d);
    }
}
void get_num(struct node*root,int x)
{
    root->d=x;
    if(root->l)get_num(root->l,x<<1);
    if(root->r)get_num(root->r,x<<1|1);
}
int main()
{
    scanf("%d",&n);
    int x;
    struct node*root=NULL;
    for(int i=0;i<n;++i)
    {
        scanf("%d",&x);
        build_tree(root,x);
    }
    cnt=0;
    get_num(root,1);
    print(root);
    for(int i=0;i<cnt-1;++i)
    {
        printf("%d ",ans[i]);
    }
    printf("%d\n",ans[cnt-1]);
    if(flag>n)puts("NO");
    else puts("YES");
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值