A lot of battleships of evil are arranged in a line before the battle. Our commander decides to use our secret weapon to eliminate the battleships. Each of the battleships can be marked a value of endurance. For every attack of our secret weapon, it could decrease the endurance of a consecutive part of battleships by make their endurance to the square root of it original value of endurance. During the series of attack of our secret weapon, the commander wants to evaluate the effect of the weapon, so he asks you for help.
You are asked to answer the queries that the sum of the endurance of a consecutive part of the battleship line.
Notice that the square root operation should be rounded down to integer.
You are asked to answer the queries that the sum of the endurance of a consecutive part of the battleship line.
Notice that the square root operation should be rounded down to integer.
For each test case, the first line contains a single integer N, denoting there are N battleships of evil in a line. (1 <= N <= 100000)
The second line contains N integers Ei, indicating the endurance value of each battleship from the beginning of the line to the end. You can assume that the sum of all endurance value is less than 2 63.
The next line contains an integer M, denoting the number of actions and queries. (1 <= M <= 100000)
For the following M lines, each line contains three integers T, X and Y. The T=0 denoting the action of the secret weapon, which will decrease the endurance value of the battleships between the X-th and Y-th battleship, inclusive. The T=1 denoting the query of the commander which ask for the sum of the endurance value of the battleship between X-th and Y-th, inclusive.
10 1 2 3 4 5 6 7 8 9 10 5 0 1 10 1 1 10 1 1 5 0 5 8 1 4 8
Case #1: 19 7 6
线段树,原来加一个剪枝就可以了。这个线段更新就直接更新到点就可以,然后加剪枝,那就是当前更新的区间全部为1的时候就没必要继续更新了,直接返回就可以。
然后注意这个这个题比较大的坑就是给你操作的时候,那个l,r可能是大小不确定的。
嗯,剩下的就没有什么好说的了。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
const int MAXN = 1e5+7;
int n,m;
struct node
{
int l,r;
long long sum;
} tree[MAXN<<2];
void push_up(int i)
{
tree[i].sum = tree[i<<1].sum + tree[i<<1|1].sum;
}
void build_tree(int i,int l,int r)
{
tree[i].l = l;
tree[i].r = r;
if(l == r)
{
scanf("%lld",&tree[i].sum);
return ;
}
int mid = (l+r)>>1;
build_tree(i<<1,l,mid);
build_tree(i<<1|1,mid+1,r);
push_up(i);
}
void updata(int i,int l,int r)
{
if(tree[i].sum == tree[i].r - tree[i].l + 1)return;
if(tree[i].l == tree[i].r)
{
tree[i].sum = sqrt(tree[i].sum);
return ;
}
int mid = (tree[i].l + tree[i].r)>>1;
if(r <= mid)updata(i<<1,l,r);
else if(l > mid)updata(i<<1|1,l,r);
else
{
updata(i<<1,l,mid);
updata(i<<1|1,mid+1,r);
}
push_up(i);
}
long long ask(int i,int l,int r)
{
if(tree[i].l == l && tree[i].r == r)return tree[i].sum;
int mid = (tree[i].l + tree[i].r)>>1;
if(r <= mid)return ask(i<<1,l,r);
else if(l > mid)return ask(i<<1|1,l,r);
else return ask(i<<1,l,mid) + ask(i<<1|1,mid+1,r);
}
int main()
{
int ca = 0;
while(~scanf("%d",&n))
{
build_tree(1,1,n);
scanf("%d",&m);
int x,l,r;
printf("Case #%d:\n",++ca);
while(m--)
{
scanf("%d%d%d",&x,&l,&r);
if(l > r)swap(l,r);
if(!x)updata(1,l,r);
else printf("%lld\n",ask(1,l,r));
}
puts("");
}
return 0;
}