Java 8 Stream API学习记录

4 篇文章 0 订阅

Stream简介

1、Java 8引入了全新的Stream API。这里的Stream和I/O流不同,它更像具有Iterable的集合类,但行为和集合类又有所不同。

2、stream是对集合对象功能的增强,它专注于对集合对象进行各种非常便利、高效的聚合操作,或者大批量数据操作。

3、只要给出需要对其包含的元素执行什么操作,比如 “过滤掉长度大于 10 的字符串”、“获取每个字符串的首字母”等,Stream 会隐式地在内部进行遍历,做出相应的数据转换。

为什么要使用Stream

1、函数式编程带来的好处尤为明显。这种代码更多地表达了业务逻辑的意图,而不是它的实现机制。易读的代码也易于维护、更可靠、更不容易出错。

package com.lxg.springboot.test;

import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;

/**
 * @author 小石潭记
 * @date 2020/7/7 20:13
 * @Description: ${todo}
 */
public class Test {

    public static void main(String[] args) {
        List<User> list = new ArrayList<>();
        list.add(new User(2, "小皇1", 20));
        list.add(new User(3, "小皇1", 30));
        list.add(new User(4, "小皇1", 40));

        List<User> list1 = new ArrayList<>();
        list1.add(new User(1, "小皇1", 10));
        list1.add(new User(2, "小皇1", 20));
        list1.add(new User(3, "小皇1", 30));
        list1.add(new User(4, "小皇1", 40));

        // 需求:给list里面user对象age > 20 添加备注信息:大龄剩女
        // 以前的写法
        List<User> userList = new ArrayList<>();
        for (User user: list) {
            if (user.getAge() > 20){
                user.setRemark("大龄剩女");
            }
            userList.add(user);
        }
        System.out.println("userList:" + userList);

        // 使用java8的新特性,stream的方式
        // 这里直接操作list里面的对象,返回值还是该list
        list.stream()
                .filter(e -> e.getAge() > 20)
                .forEach(e -> e.setRemark("大龄剩女"));
        System.out.println("list:" + list);

        list.stream()
                .forEach(e -> {
                    if (e.getAge() > 20) {
                        e.setRemark("大龄剩女");
                    }
                });
        System.out.println("list:" + list);

        // 使用map会生成一个新的list
        list1.stream()
                .map(e -> {
                    if (e.getAge() > 20) {
                        e.setRemark("大龄剩女");
                    }
                    return e;
                })
                .collect(Collectors.toList());
        System.out.println("list1:" + list1);
    }

    static class User {

        private int id;
        private String name;
        private int age;
        private String remark;

        public int getId() {
            return id;
        }

        public void setId(int id) {
            this.id = id;
        }

        public String getName() {
            return name;
        }

        public void setName(String name) {
            this.name = name;
        }

        public int getAge() {
            return age;
        }

        public void setAge(int age) {
            this.age = age;
        }

        public String getRemark() {
            return remark;
        }

        public void setRemark(String remark) {
            this.remark = remark;
        }

        public User(){

        }

        public User(int id, String name, int age) {
            this.id = id;
            this.name = name;
            this.age = age;
        }

        @Override
        public String toString() {
            return "User{" +
                    "id=" + id +
                    ", name='" + name + '\'' +
                    ", age=" + age +
                    ", remark='" + remark + '\'' +
                    '}';
        }
    }

}

2、高端

import java.util.*;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentSkipListMap;
import java.util.function.Function;
import java.util.stream.Collectors;

import static java.util.stream.Collectors.*;

/**
 * @author liujiang
 * @version v1.0
 * @description 本类主要是用于归纳总结java8 Stream的使用方式,后续会继续补充
 * @since 2019/8/5 22:40
 */
public class Lambda {

    public static void main(String[] args) {

        readMeFirst();

        final List<Cat> catList = initList();
        // 1. filter(Predicate<? super T> predicate) 过滤年龄小于等于3的猫咪
        List<Cat> ageLessThanThreeList = catList.parallelStream().filter(cat -> cat.getAge().compareTo(3) <= 0).collect(toCollection(LinkedList::new));
        System.out.println("------ filter line ------");
        ageLessThanThreeList.parallelStream().forEach(System.err::println);

        // 2. map(Function<? super T, ? extends R> mapper) 将英文名称全部大写
        List<String> upperCaseEnNameList = catList.parallelStream().map(cat -> cat.getEnName().toUpperCase()).collect(Collectors.toList());
        System.out.println("------ map line -------");
        upperCaseEnNameList.parallelStream().forEach(enName -> {
            System.err.print(enName + " ");
        });
        System.out.println();

        // 3. mapToInt(ToIntFunction<? super T> mapper) 对年龄求和
        int sumAge = catList.parallelStream().mapToInt(Cat::getAge).sum();
        System.out.println("------ mapToInt line -----");
        System.err.println(sumAge);

        // 4. flatMap(Function<? super T, ? extends Stream<? extends R>> mapper) 层级结构扁平化
        List<List<Integer>> flatMapList = flatMapInitList();
        List<Integer> numberList = flatMapList.parallelStream().flatMap(itemList -> itemList.parallelStream()).collect(toList());
        System.out.println("------ flatMap line ------");
        numberList.parallelStream().forEach(item -> {
            System.err.print(item.toString() + " ");
        });

        // 5. distinct 去重
        List<Cat> dupCatList = dupCatInitList();
        List<Cat> duplicateCatList = dupCatList.parallelStream().distinct().collect(toList());
        System.out.println();
        System.out.println("----- distinct for cat line (error) -------");
        duplicateCatList.stream().forEach(cat -> {
            // 因为没有重写hashCode 及 equals方法,所以得到的是两个Cat对象
            System.err.println(cat.toString());
        });
        // case two, 实现过滤去重
        List<Integer> dupIntegerLit = dupIntegerInitList();
        List<Integer> duplicateIntegerList = dupIntegerLit.parallelStream().distinct().collect(toList());
        System.out.println("------ distinct for Integer line (right) -----");
        duplicateIntegerList.parallelStream().forEach(System.out::print);
        System.out.println();

        // 6. sorted --> no args
        List<Integer> orderAgeList = catList.parallelStream().map(Cat::getAge).sorted().collect(toList());
        System.out.println("------ sorted line (no args) ------");
        orderAgeList.stream().forEach(System.out::print);
        System.out.println();
        System.out.println("attention:并行流会影响排序,需要特别注意!并行流结果为:");
        orderAgeList.parallelStream().forEach(System.out::print);

        // sorted(Comparator<? super T> comparator) --> has args [reverse order]
        List<Cat> orderedAgeOfCatList = catList.parallelStream().sorted(Comparator.comparing(Cat::getAge).reversed()).collect(toList());
        /*
            等效于:
            List<Cat> orderedAgeOfCatList = catList.parallelStream().sorted(Collections.reverseOrder(Comparator.comparing(Cat::getAge))).collect(toList());
            即:Comparator.comparing(Cat::getAge).reversed() = Collections.reverseOrder(Comparator.comparing(Cat::getAge))
         */
        System.out.println();
        System.out.println("-------- sorted line (has args)------");
        orderedAgeOfCatList.stream().forEach(cat -> {
            System.err.println(cat.toString());
        });

        // 使用java8 list.sort(Comparator<? super E> c)
        catList.sort(Comparator.comparing(Cat::getAge).thenComparing(Cat::getCnName).reversed());
        System.out.println("------- list.sort() -------");
        catList.stream().forEachOrdered(System.out::println);
        /*
            总结:
                1. 无参的sorted()是对某一项的排序,默认返回natural order,返回的是Stream<T>
                2. 带参的sorted(Comparator<? super T> comparator)可对实体类中的某项排序,默认natural order,可通过reversed()方法倒序,返回的是实体类的集合.
                3. 亦可使用java8 新的排序方式 list.sort(Comparator<? super E> c),配合Comparator进行排序
         */

        // 7. limit(long maxSize)
        List<Cat> limitCatList = catList.stream().limit(2).collect(toList());
        System.out.println("------ limit line ------");
        limitCatList.stream().forEach(cat -> {
            System.err.println(cat.toString());
        });

        // 8. skip(long n)
        List<Cat> skipCatList = catList.stream().skip(1).collect(toList());
        System.out.println("------ skip line ------");
        skipCatList.parallelStream().forEach(cat -> {
            System.err.println(cat.toString());
        });

        // 9. min(Comparator<? super T> comparator) 最小的
        Cat minAgeOfCat = catList.parallelStream().min(Comparator.comparing(Cat::getAge)).get();
        System.out.println("------ min line ------");
        System.err.println(minAgeOfCat.toString());

        // 10. max(Comparator<? super T> comparator) 最大的
        Cat maxAgeOfCat = catList.parallelStream().max(Comparator.comparing(Cat::getAge)).get();
        System.out.println("----- max line ------");
        System.err.println(maxAgeOfCat.toString());

        // 11. count
        long count = catList.parallelStream().count();
        System.out.println("----- count line -----");
        System.err.println(count);

        // 12. anyMatch(Predicate<? super T> predicate)
        boolean isAnyMatch = catList.parallelStream().anyMatch(cat -> cat.getCnName().contains("奶"));
        System.out.println("----- anyMatch line -----");
        System.err.println(isAnyMatch);

        // 13. findAny
        Cat findAnyOfCat = catList.parallelStream().filter(cat -> cat.getCnName().contains("奶")).findAny().get();
        System.out.println("------ findAny line ------");
        System.err.println(findAnyOfCat.toString());

        /*
            总结:很多时候anyMatch与findAny可以相互替换,使用方式类似
         */

        // 14. allMatch(Predicate<? super T> predicate) 每个元素都必须匹配
        boolean isAllMatch = catList.parallelStream().allMatch(cat -> Objects.equals(cat.getCnName(), "奶酪"));
        System.out.println("------ allMatch line -------");
        System.err.println(isAllMatch);

        System.out.println();
        System.out.println("-------------------------------------  分割线  ----------------------------------------------");
        System.out.println("---------- the next methods are all for class Collectors --------------");
        System.out.println();

        // 1. Collector<T, ?, C> toCollection(Supplier<C> collectionFactory) 返回有序列表
        List<Cat> toCollectionMethodList = catList.stream().limit(3).collect(toCollection(LinkedList::new));
        System.out.println("------- Collectors.toCollection line ---------");
        toCollectionMethodList.stream().forEach(System.err::println);

        // 2. Collector<T, ?, List<T>> toList()
        List<Cat> toListMethodList = catList.stream().skip(2).collect(toList());
        System.out.println("------- Collectors.toList line -------");
        toListMethodList.stream().forEach(System.err::println);

        // 3. Collector<T, ?, Set<T>> toSet() 过滤去重列表
        Set<Integer> toSetMethodSet = dupIntegerInitList().stream().collect(toSet());
        System.out.println("------- Collectors.toSet line --------");
        toSetMethodSet.stream().forEach(item -> {
            System.err.print(item + " ");
        });

        // 4. Collector<CharSequence, ?, String> joining()
        String cnNameJoiningStr = catList.stream().map(Cat::getCnName).collect(joining());
        System.out.println();
        System.out.println("------- Collectors.joining line -------");
        System.err.println(cnNameJoiningStr);

        // 5. Collector<CharSequence, ?, String> joining(CharSequence delimiter)
        String cnNameJoiningWithDelimiterStr = catList.stream().map(Cat::getCnName).collect(Collectors.joining(" && "));
        System.out.println();
        System.out.println("------ Collectors.joining(CharSequence delimiter) line --------");
        System.err.println(cnNameJoiningWithDelimiterStr);

        // 6. Collector<CharSequence, ?, String> joining(CharSequence delimiter, CharSequence prefix, CharSequence suffix)
        String cnNameJoiningWithPrefixAndSuffixStr = catList.stream().map(Cat::getCnName).collect(joining(" && ", "pre ", " suf"));
        System.out.println();
        System.out.println("------ Collectors.joining(CharSequence delimiter, CharSequence prefix, CharSequence suffix) line --------");
        System.err.println(cnNameJoiningWithPrefixAndSuffixStr);

        /*
            7. Collector<T, ?, R> mapping(Function<? super T, ? extends U> mapper, Collector<? super U, A, R> downstream)
            mapping中有一段注释非常有用,需要仔细揣摩:
                The {@code mapping()} collectors are most useful when used in a multi-level reduction, such as downstream of a {@code groupingBy} or
                {@code partitioningBy}. for example:
                Map<City, Set<String>> lastNamesByCity = people.stream().collect(groupingBy(Person::getCity, mapping(Person::getLastName, toSet())));
         */
        Map<Integer, Set<String>> mappingMethod = catList.stream().collect(groupingBy(Cat::getAge, mapping(Cat::getCnName, toSet())));
        System.out.println();
        System.out.println("-------- Collectors.mapping line --------");
        mappingMethod.values().stream().forEach(cnNameStr -> {
            System.err.print(cnNameStr + " && ");
        });

        // 8. Collector<T,A,RR> collectingAndThen(Collector<T,A,R> downstream, Function<R,RR> finisher)
        String collectingAndThenStr = catList.parallelStream().map(x -> x.getCnName()).collect(collectingAndThen(Collectors.joining(" && ", "pre ", " suf "), k -> k + " end "));
        System.out.println();
        System.out.println("------ Collectors.collectingAndThen line -------");
        System.err.println(collectingAndThenStr);

        // 9. Collector<T, ?, Optional<T>> minBy(Comparator<? super T> comparator)
        Optional<Cat> minByAgeOfCat = catList.parallelStream().collect(minBy(Comparator.comparing(Cat::getAge)));
        System.out.println();
        System.out.println("-------- Collectors.minBy line ---------");
        System.out.println(minByAgeOfCat.get().toString());

        // 10. Collector<T, ?, Optional<T>> maxBy(Comparator<? super T> comparator)
        Optional<Cat> maxByAgeOfCat = catList.parallelStream().collect(maxBy(Comparator.comparing(Cat::getAge)));
        System.out.println();
        System.out.println("-------- Collectors.maxBy line ---------");
        System.out.println(maxByAgeOfCat.get().toString());

        // 11. Collector<T, ?, Integer> summingInt(ToIntFunction<? super T> mapper)
        int totalAgeOfCat = catList.parallelStream().collect(summingInt(Cat::getAge));
        System.out.println();
        System.out.println("------- Collectors.summingInt line -------");
        System.out.println(totalAgeOfCat);

        // 12. Collector<T, ?, Double> averagingInt(ToIntFunction<? super T> mapper)
        double averagingOfCat = catList.parallelStream().collect(averagingInt(Cat::getAge));
        System.out.println();
        System.out.println("------ Collector.averagingInt line -------");
        System.out.println(averagingOfCat);

        // 13. Collector<T, ?, Map<K, List<T>>> groupingBy(Function<? super T, ? extends K> classifier)
        Map<Integer, List<Cat>> groupingByAgeOfCatMapList = catList.parallelStream().collect(groupingBy(Cat::getAge));
        System.out.println();
        System.out.println("------ Collector.groupingBy(one param) line -------");
        System.err.println("the type of map is HashMap : " + (groupingByAgeOfCatMapList instanceof HashMap));
        groupingByAgeOfCatMapList.forEach((k, v) -> {
            System.err.println("type of v(list) is ArrayList : " + (v instanceof ArrayList));
            v.parallelStream().forEach(System.err::println);
        });

        // 14. Collector<T, ?, Map<K, D>> groupingBy(Function<? super T, ? extends K> classifier, Collector<? super T, A, D> downstream)
        Map<Integer, List<Cat>> groupByAgeOfCatMapList1 = catList.parallelStream().collect(groupingBy(Cat::getAge, toCollection(LinkedList::new)));
        System.out.println();
        System.out.println("------ Collectors.groupingBy(two param) line -------");
        System.err.println("the type of map is HashMap : " + (groupByAgeOfCatMapList1 instanceof HashMap));
        groupByAgeOfCatMapList1.forEach((k, v) -> {
            System.err.println("type of v(list) is LinkedList : " + (v instanceof LinkedList));
            v.parallelStream().forEach(System.err::println);
        });

        // 15.  Collector<T, ?, M> groupingBy(Function<? super T, ? extends K> classifier, Supplier<M> mapFactory, Collector<? super T, A, D> downstream)
        Map<Integer, List<Cat>> groupByAgeOfCatMapList2 = catList.parallelStream().collect(groupingBy(Cat::getAge, LinkedHashMap::new, toCollection(ArrayList::new)));
        System.out.println();
        System.out.println("----- Collectors.groupingBy(three param) line ------");
        System.err.println("the type of map is HashMap : " + (groupByAgeOfCatMapList2 instanceof HashMap));
        groupByAgeOfCatMapList2.forEach((k, v) -> {
            System.err.println("type of v(list) is ArrayList : " + (v instanceof ArrayList));
            v.parallelStream().forEach(System.err::println);
        });

        // 16. Collector<T, ?, ConcurrentMap<K, List<T>>> groupingByConcurrent(Function<? super T, ? extends K> classifier)
        Map<Integer, List<Cat>> groupingByAgeOfCatConcurrentMapList = catList.parallelStream().collect(groupingByConcurrent(Cat::getAge));
        System.out.println();
        System.out.println("----- Collectors.groupingByConcurrent(one param) line ------");
        System.err.println("the type of map is ConcurrentHashMap : " + (groupingByAgeOfCatConcurrentMapList instanceof ConcurrentHashMap));
        groupingByAgeOfCatConcurrentMapList.forEach((k, v) -> {
            System.err.println("type of v(list) is ArrayList : " + (v instanceof ArrayList));
        });

        // 17. Collector<T, ?, ConcurrentMap<K, D>> groupingByConcurrent(Function<? super T, ? extends K> classifier, Collector<? super T, A, D> downstream)
        Map<Integer, List<Cat>> groupingByAgeOfCatConcurrentMapList1 = catList.parallelStream().collect(groupingByConcurrent(Cat::getAge, toCollection(LinkedList::new)));
        System.out.println();
        System.out.println("------ Collectors.groupingByConcurrent(two param) line ------");
        System.err.println("the type of map is ConcurrentHashMap : " + (groupingByAgeOfCatConcurrentMapList1 instanceof ConcurrentHashMap));
        groupingByAgeOfCatConcurrentMapList1.forEach((k, v) -> {
            System.err.println("type of v(list) is LinkedList : " + (v instanceof LinkedList));
        });

        // 18. Collector<T, ?, M> groupingByConcurrent(Function<? super T, ? extends K> classifier, Supplier<M> mapFactory,  Collector<? super T, A, D> downstream)
        Map<Integer, List<Cat>> groupingByAgeOfCatConcurrentMapList2 = catList.parallelStream().collect(groupingByConcurrent(Cat::getAge, ConcurrentSkipListMap::new, toCollection(LinkedList::new)));
        System.out.println();
        System.out.println("------ Collectors.groupingByConcurrent(three param) line ------");
        System.err.println("the type of map is ConcurrentSkipListMap : " + (groupingByAgeOfCatConcurrentMapList2 instanceof ConcurrentSkipListMap));
        groupingByAgeOfCatConcurrentMapList2.forEach((k, v) -> {
            System.err.println("type of v(list) is LinkedList : " + (v instanceof LinkedList));
        });

        // 19. Collector<T, ?, Map<Boolean, List<T>>> partitioningBy(Predicate<? super T> predicate)
        Map<Boolean, List<Cat>> partitioningByAgeOfCatList = catList.parallelStream().collect(partitioningBy(x -> x.getAge() > 1));
        System.out.println();
        System.out.println("------ Collectors.partitioningBy(one param) line ------");
        System.err.println("the type of map is HashMap : " + (partitioningByAgeOfCatList instanceof HashMap));
        partitioningByAgeOfCatList.forEach((k, v) -> {
            System.err.println("type of v(list) is ArrayList : " + (v instanceof ArrayList));
        });

        // 20. Collector<T, ?, Map<Boolean, D>> partitioningBy(Predicate<? super T> predicate, Collector<? super T, A, D> downstream)
        Map<Boolean, List<Cat>> partitioningByAgeOfCatList1 = catList.parallelStream().collect(partitioningBy(x -> x.getAge() < 3, toCollection(LinkedList::new)));
        System.out.println();
        System.out.println("------ Collectors.partitioningBy(two param) line ------");
        System.err.println("the type of map is HashMap : " + (partitioningByAgeOfCatList1 instanceof HashMap));
        System.err.println("the type of map is LinkedHashMap : " + (partitioningByAgeOfCatList1 instanceof LinkedHashMap));
        System.err.println("the type of map is TreeMap : " + (partitioningByAgeOfCatList1 instanceof TreeMap));
        System.err.println("the type of map is Hashtable : " + (partitioningByAgeOfCatList1 instanceof Hashtable));
        System.err.println("the type of map is ConcurrentHashMap : " + (partitioningByAgeOfCatList1 instanceof ConcurrentHashMap));
        System.err.println("the type of map is ConcurrentSkipListMap : " + (partitioningByAgeOfCatList1 instanceof ConcurrentSkipListMap));
        System.err.println("the type of map is Map : " + (partitioningByAgeOfCatList1 instanceof Map));
        partitioningByAgeOfCatList1.forEach((k, v) -> {
            System.err.println("type of v(list) is LinkedList : " + (v instanceof LinkedList));
        });

        /*
            总结:partitionBy返回的Map直接是一个Map接口,没有具体的实现类。且,返回的Map结构中,以true与false为key的值都有,在处理值的时候根据需求过滤。
            // 21. 下面尝试下变种的一些写法: 返回值的核心都是list
         */
        Map<Boolean, List<String>> partitioningByAgeOfCatList2 = catList.parallelStream().collect(partitioningBy(k -> k.getAge() < 3, mapping(Cat::getCnName, toCollection(LinkedList::new))));
        System.out.println();
        System.out.println("----- Collectors.partitioningBy(two param) [other way to result] line -------");
        System.err.println("the type of map is Map : " + (partitioningByAgeOfCatList2 instanceof Map));
        // Map<false, List<String>> && Map<true, List<String>>
        partitioningByAgeOfCatList2.forEach((k, v) -> {
            if (k) {
                v.parallelStream().forEach(System.err::println);
            }
        });

        // 22. Collector<T, ?, Map<K,U>> toMap(Function<? super T, ? extends K> keyMapper, Function<? super T, ? extends U> valueMapper)
        Map<Integer, String> toMapOfCatList = Arrays.asList(new Cat(1, "新来的", "new1", true)
                , new Cat(2, "是我呀", "new2", false))
                .parallelStream().collect(toMap(Cat::getAge, Cat::getCnName));
        System.out.println();
        System.out.println("------ Collectors.toMap(two param) line -------");
        System.err.println("the type of map is HashMap : " + (toMapOfCatList instanceof HashMap));
        toMapOfCatList.forEach((k, v) -> {
            System.err.println(v);
        });

        // 23. Collector<T, ?, Map<K,U>> toMap(Function<? super T, ? extends K> keyMapper, Function<? super T, ? extends U> valueMapper, BinaryOperator<U> mergeFunction)
        Map<Integer, String> toMapOfCatList1 = catList.parallelStream().collect(toMap(Cat::getAge, Cat::getEnName, (e1, e2) -> e1 + e2));
        System.out.println();
        System.out.println("------ Collectors.toMap(three param) line -------");
        System.err.println("the type of map is HashMap : " + (toMapOfCatList1 instanceof HashMap));
        toMapOfCatList1.forEach((k, v) -> {
            System.err.println(v);
        });

        /*
            24. Collector<T, ?, M> toMap(Function<? super T, ? extends K> keyMapper, Function<? super T, ? extends U> valueMapper,
                                         BinaryOperator<U> mergeFunction, Supplier<M> mapSupplier)
         */
        Map<Integer, String> toMapOfCatList2 = catList.parallelStream().collect(toMap(Cat::getAge, Cat::getEnName, (e1, e2) -> e1, ConcurrentHashMap::new));
        System.out.println();
        System.out.println("------ Collectors.toMap(four param) line -------");
        System.err.println("the type of map is ConcurrentHashMap : " + (toMapOfCatList2 instanceof ConcurrentHashMap));
        toMapOfCatList2.forEach((k, v) -> {
            System.err.println(v);
        });

        // one. list to map -->
        Map<Integer, String> toMapOfCatList3 = catList.parallelStream()
                .sorted(Comparator
                        .comparing(Cat::getAge)
                        .thenComparing(Cat::getEnName)
                        .reversed())
                .collect(toMap(Cat::getAge, Cat::getEnName, (e1, e2) -> e1, ConcurrentSkipListMap::new));
        System.out.println();
        System.out.println("----- Collectors.toMap(four param) line [list to map, enName as value] ------");
        System.err.println("the type of map is ConcurrentSkipListMap : " + (toMapOfCatList3 instanceof ConcurrentSkipListMap));
        toMapOfCatList3.forEach((k, v) -> {
            System.err.println(v);
        });

        // two. list to map --> Cat as value
        Map<Integer, Cat> toMapOfCatList4 = catList.parallelStream().collect(toMap(Cat::getAge, Function.identity(), (e1, e2) -> e1, ConcurrentHashMap::new));
        System.out.println();
        System.out.println("------ Collectors.toMap(four param) line [list to map, Cat as value]");
        System.err.println("the type of map is ConcurrentHashMap : " + (toMapOfCatList4 instanceof ConcurrentHashMap));
        toMapOfCatList4.forEach((k, v) -> {
            System.err.println(v);
        });

        // map to another map, firstDemo
        Map<Integer, Integer> resultMap = new LinkedHashMap<>();
        initMap().entrySet().parallelStream().sorted(Map.Entry.comparingByKey()).forEachOrdered(e -> resultMap.put(e.getKey(), e.getValue()));
        // initMap().entrySet().parallelStream().sorted(Map.Entry.comparingByKey(Comparator.reverseOrder())).forEachOrdered(e -> resultMap.put(e.getKey(), e.getValue()));
        System.out.println();
        System.out.println("----- map to map line [order by key] -------");
        resultMap.entrySet().forEach(entry -> {
            System.err.println(" ordered by key , key is : " + entry.getKey() + " , value is : " + entry.getValue());
        });

        // map to another map, secondDemo
        /*
            Map<Integer, Integer> resultMap1 = initMap().entrySet().parallelStream().sorted(Map.Entry.comparingByKey()).collect(toMap())
            这个方法行不通,toMap中不知道怎么写
         */
        Map<Integer, Integer> resultMap1 = new LinkedHashMap<>();
        initMap().entrySet().parallelStream().sorted(Map.Entry.comparingByValue(Comparator.reverseOrder())).forEachOrdered(e -> resultMap1.put(e.getKey(), e.getValue()));
        System.out.println();
        System.out.println("------ map to map line [order by value] -----");
        resultMap1.entrySet().stream().forEach(entry -> {
            System.err.println(" ordered by value, key is : " + entry.getKey() + " , value is : " + entry.getValue());
        });


    }

    private static Map<Integer, Integer> initMap() {
        return new HashMap<Integer, Integer>() {{
            put(1, 10);
            put(3, 12);
            put(2, 11);
            put(4, 13);
        }};
    }

    private static void readMeFirst() {
        /*
            1.Stream 流的常规操作可归类如下:
            . intermediate(中间流 [可一个或多个])
                map (mapToInt, flatMap 等)、 filter、 distinct、 sorted、 peek、 limit、 skip、 parallel、 sequential、 unordered
            . terminal(终结流 [只可有一个])
                forEach、 forEachOrdered、 toArray、 reduce、 collect、 min、 max、 count、 anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 iterator
            . short-circuiting(短路 [可随时终止])
                anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 limit

         */

    }

    private static List<Integer> dupIntegerInitList() {
        return new ArrayList<Integer>() {{
            add(1);
            add(1);
            add(2);
            add(3);
        }};
    }

    private static List<Cat> dupCatInitList() {
        return new ArrayList<Cat>() {{
            add(new Cat(1, "刘啵啵儿", "liuboboer", true));
            add(new Cat(1, "刘啵啵儿", "liuboboer", true));
        }};
    }

    private static List<Cat> initList() {
        return new ArrayList<Cat>() {{
            add(new Cat(2, "奶油", "cream", true));
            add(new Cat(2, "奶酪", "cheese", true));
            add(new Cat(3, "曾三妹", "sisterThree", false));
            add(new Cat(4, "七夕", "seventh", true));
        }};
    }

    private static List<List<Integer>> flatMapInitList() {
        return new ArrayList<List<Integer>>() {{
            add(Arrays.asList(1, 2, 3));
            add(Arrays.asList(4, 5));
            add(Arrays.asList(6, 7, 8));
        }};
    }

}

class Cat {

    /**
     * 年龄
     */
    private Integer age;

    /**
     * 中文名称
     */
    private String cnName;

    /**
     * 英文名称
     */
    private String enName;

    /**
     * 是否为男性
     */
    private Boolean isMale;

    public Integer getAge() {
        return age;
    }

    public void setAge(Integer age) {
        this.age = age;
    }

    public String getCnName() {
        return cnName;
    }

    public void setCnName(String cnName) {
        this.cnName = cnName;
    }

    public String getEnName() {
        return enName;
    }

    public void setEnName(String enName) {
        this.enName = enName;
    }

    public Boolean getMale() {
        return isMale;
    }

    public void setMale(Boolean male) {
        isMale = male;
    }

    public Cat() {
    }

    public Cat(Integer age, String cnName, String enName, Boolean isMale) {
        this.age = age;
        this.cnName = cnName;
        this.enName = enName;
        this.isMale = isMale;
    }

    @Override
    public String toString() {
        return "Cat{" +
                "age=" + age +
                ", cnName='" + cnName + '\'' +
                ", enName='" + enName + '\'' +
                ", isMale=" + isMale +
                '}';
    }
}

实例数据源

public class PersonModel {
    private String name;
    private int age;
    private String sex;

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }

    public String getSex() {
        return sex;
    }

    public void setSex(String sex) {
        this.sex = sex;
    }

    public PersonModel() {
    }

    public PersonModel(String name, int age, String sex) {
        this.name = name;
        this.age = age;
        this.sex = sex;
    }

    @Override
    public String toString() {
        return "PersonModel{" +
                "name='" + name + '\'' +
                ", age=" + age +
                ", sex='" + sex + '\'' +
                '}';
    }
}
public class Data {
    private static List<PersonModel> list = null;

    static {
        PersonModel wu = new PersonModel("wu qi", 18, "男");
        PersonModel zhang = new PersonModel("zhang san", 19, "男");
        PersonModel wang = new PersonModel("wang si", 20, "女");
        PersonModel zhao = new PersonModel("zhao wu", 20, "男");
        PersonModel chen = new PersonModel("chen liu", 21, "男");
        list = Arrays.asList(wu, zhang, wang, zhao, chen);
    }

    public static List<PersonModel> getData() {
        return list;
    }
}

Filter

1、遍历数据并检查其中的元素时使用。

2、filter接受一个函数作为参数,该函数用Lambda表达式表示。

import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;

import static java.util.stream.Collectors.toList;

public class Test1 {

    public static void main(String[] args) {
        /**
         * 过滤所有的男性
         */
        List<PersonModel> data = Data.getData();

        // 以前的写法
        List<PersonModel> temp=new ArrayList<>();
        for (PersonModel person: data) {
            if("男".equals(person.getSex())){
                temp.add(person);
            }
        }
        System.out.println(temp);

        // 现在的写法
        List<PersonModel> collect = data
                .stream()
                .filter(person -> "男".equals(person.getSex()))
                .collect(toList());
        System.out.println(collect);


    }

}

根据以上的测试,查看结果temp和collect都是相同的。

import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;

import static java.util.stream.Collectors.toList;

public class Test2 {

    public static void main(String[] args) {
        /**
         * 过滤所有的男性,并且年纪小于20岁
         */
        List<PersonModel> data1 = Data.getData();

        //以前的写法
        List<PersonModel> temp1=new ArrayList<>();
        for (PersonModel person: data1) {
            if("男".equals(person.getSex())&&person.getAge()<20){
                temp1.add(person);
            }
        }
        System.out.println(temp1);
        //现在的写法
        List<PersonModel> collect1 = data1
                .stream()
                .filter(person -> {
                    if ("男".equals(person.getSex()) && person.getAge() < 20) {
                        return true;
                    }
                    return false;
                })
                .collect(toList());
        System.out.println(collect1);

        // 另外一种写法
        List<PersonModel> collect2 = data1
                .stream()
                .filter(person -> ("男").equals(person.getSex()) && person.getAge() < 20)
                .collect(toList());
        System.out.println(collect2);
    }

}

根据以上的测试,查看结果temp1和collect1、collect2都是相同的。

Map

1、map生成的是个一对一映射,for的作用

2、比较常用

3、而且很简单

import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;

import static java.util.stream.Collectors.toList;

public class Test3 {

    public static void main(String[] args) {

        /**
         * 取出所有的用户名字
         */
        List<PersonModel> data2 = Data.getData();

        // 以前的写法
        List<String> list=new ArrayList<>();
        for (PersonModel person : data2) {
            list.add(person.getName());
        }
        System.out.println(list);

        // 现在的写法一
        List<String> collect = data2
                .stream()
                .map(person -> person.getName())
                .collect(toList());
        System.out.println(collect);
        // 现在的写法二
        List<String> collect1 = data2
                .stream()
                .map(PersonModel::getName)
                .collect(toList());
        System.out.println(collect1);
        // 现在的写法三
        List<String> collect2 = data2
                .stream()
                .map(person -> {
                    System.out.println(person.getName());
                    return person.getName();
                })
                .collect(toList());
        System.out.println(collect2);

    }

}

经过测试,最终的结果都是一样的。

FlatMap

1、顾名思义,跟map差不多,更深层次的操作

2、但还是有区别的

3、map和flat返回值不同

4、Map 每个输入元素,都按照规则转换成为另外一个元素。
还有一些场景,是一对多映射关系的,这时需要 flatMap。

5、Map一对一

6、Flatmap一对多

7、map和flatMap的方法声明是不一样的

(1) Stream map(Function mapper);

(2) Stream flatMap(Function> mapper);

(3) map和flatMap的区别:我个人认为,flatMap的可以处理更深层次的数据,入参为多个list,结果可以返回为一个list,而map是一对一的,入参是多个list,结果返回必须是多个list。通俗的说,如果入参都是对象,那么flatMap可以操作对象里面的对象,而map只能操作第一层。

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.Stream;

import static java.util.stream.Collectors.toList;

public class Test4 {

    public static void main(String[] args) {

        /**
         *  测试使用flatMap
         */
        List<PersonModel> data3 = Data.getData();
        List<String> collect = data3
                .stream()
                .flatMap(person -> Arrays.stream(person.getName().split(" ")))
                .collect(toList());
        System.out.println(collect);
        // collect1返回的类型和其他不一样
        List<Stream<String>> collect1 = data3
                .stream()
                .map(person -> Arrays.stream(person.getName().split(" ")))
                .collect(toList());
        System.out.println(collect1);

        // 用map实现
        List<String> collect2 = data3
                .stream()
                .map(person -> person.getName().split(" "))
                .flatMap(Arrays::stream).collect(toList());
        System.out.println(collect2);
        //用另外一种方式实现
        List<String> collect3 = data3
                .stream()
                .map(person -> person.getName().split(" "))
                .flatMap(str -> Arrays.asList(str).stream())
                .collect(toList());
        System.out.println(collect3);
    }

}

Reduce

1、感觉类似递归

2、数字(字符串)累加

3、个人没咋用过

 public static void reduceTest(){
        //累加,初始化值是 10
        Integer reduce = Stream.of(1, 2, 3, 4)
                .reduce(10, (count, item) ->{
            System.out.println("count:"+count);
            System.out.println("item:"+item);
            return count + item;
        } );
        System.out.println(reduce);

        Integer reduce1 = Stream.of(1, 2, 3, 4)
                .reduce(0, (x, y) -> x + y);
        System.out.println(reduce1);

        String reduce2 = Stream.of("1", "2", "3")
                .reduce("0", (x, y) -> (x + "," + y));
        System.out.println(reduce2);
    }

Collect

1、collect在流中生成列表,map,等常用的数据结构

2、toList()

3、toSet()

4、toMap()

5、自定义

 /**
     * toList
     */
    public static void toListTest(){
        List<PersonModel> data = Data.getData();
        List<String> collect = data.stream()
                .map(PersonModel::getName)
                .collect(Collectors.toList());
    }

    /**
     * toSet
     */
    public static void toSetTest(){
        List<PersonModel> data = Data.getData();
        Set<String> collect = data.stream()
                .map(PersonModel::getName)
                .collect(Collectors.toSet());
    }

    /**
     * toMap
     */
    public static void toMapTest(){
        List<PersonModel> data = Data.getData();
        Map<String, Integer> collect = data.stream()
                .collect(
                        Collectors.toMap(PersonModel::getName, PersonModel::getAge)
                );

        data.stream()
                .collect(Collectors.toMap(per->per.getName(), value->{
            return value+"1";
        }));
    }

    /**
     * 指定类型
     */
    public static void toTreeSetTest(){
        List<PersonModel> data = Data.getData();
        TreeSet<PersonModel> collect = data.stream()
                .collect(Collectors.toCollection(TreeSet::new));
        System.out.println(collect);
    }

    /**
     * 分组
     */
    public static void toGroupTest(){
        List<PersonModel> data = Data.getData();
        Map<Boolean, List<PersonModel>> collect = data.stream()
                .collect(Collectors.groupingBy(per -> "男".equals(per.getSex())));
        System.out.println(collect);
    }

    /**
     * 分隔
     */
    public static void toJoiningTest(){
        List<PersonModel> data = Data.getData();
        String collect = data.stream()
                .map(personModel -> personModel.getName())
                .collect(Collectors.joining(",", "{", "}"));
        System.out.println(collect);
    }

    /**
     * 自定义
     */
    public static void reduce(){
        List<String> collect = Stream.of("1", "2", "3").collect(
                Collectors.reducing(new ArrayList<String>(), x -> Arrays.asList(x), (y, z) -> {
                    y.addAll(z);
                    return y;
                }));
        System.out.println(collect);
    }

Optional

1、Optional 是为核心类库新设计的一个数据类型,用来替换 null 值。

2、人们对原有的 null 值有很多抱怨,甚至连发明这一概念的Tony Hoare也是如此,他曾说这是自己的一个“价值连城的错误”

3、用处很广,不光在lambda中,哪都能用

4、Optional.of(T),T为非空,否则初始化报错

5、Optional.ofNullable(T),T为任意,可以为空

6、isPresent(),相当于 !=null

7、ifPresent(T), T可以是一段lambda表达式 ,或者其他代码,非空则执行

public static void main(String[] args) {


        PersonModel personModel=new PersonModel();

        //对象为空则打出 -
        Optional<Object> o = Optional.of(personModel);
        System.out.println(o.isPresent()?o.get():"-");

        //名称为空则打出 -
        Optional<String> name = Optional.ofNullable(personModel.getName());
        System.out.println(name.isPresent()?name.get():"-");

        //如果不为空,则打出xxx
        Optional.ofNullable("test").ifPresent(na->{
            System.out.println(na+"ifPresent");
        });

        //如果空,则返回指定字符串
        System.out.println(Optional.ofNullable(null).orElse("-"));
        System.out.println(Optional.ofNullable("1").orElse("-"));

        //如果空,则返回 指定方法,或者代码
        System.out.println(Optional.ofNullable(null).orElseGet(()->{
            return "hahah";
        }));
        System.out.println(Optional.ofNullable("1").orElseGet(()->{
            return "hahah";
        }));

        //如果空,则可以抛出异常
        System.out.println(Optional.ofNullable("1").orElseThrow(()->{
            throw new RuntimeException("ss");
        }));


//        Objects.requireNonNull(null,"is null");


        //利用 Optional 进行多级判断
        EarthModel earthModel1 = new EarthModel();
        //old
        if (earthModel1!=null){
            if (earthModel1.getTea()!=null){
                //...
            }
        }
        //new
        Optional.ofNullable(earthModel1)
                .map(EarthModel::getTea)
                .map(TeaModel::getType)
                .isPresent();


//        Optional<EarthModel> earthModel = Optional.ofNullable(new EarthModel());
//        Optional<List<PersonModel>> personModels = earthModel.map(EarthModel::getPersonModels);
//        Optional<Stream<String>> stringStream = personModels.map(per -> per.stream().map(PersonModel::getName));


        //判断对象中的list
        Optional.ofNullable(new EarthModel())
                .map(EarthModel::getPersonModels)
                .map(pers->pers
                        .stream()
                        .map(PersonModel::getName)
                        .collect(toList()))
                .ifPresent(per-> System.out.println(per));


        List<PersonModel> models=Data.getData();
        Optional.ofNullable(models)
                .map(per -> per
                        .stream()
                        .map(PersonModel::getName)
                        .collect(toList()))
                .ifPresent(per-> System.out.println(per));

    }

并发

1、stream替换成parallelStream或 parallel

2、输入流的大小并不是决定并行化是否会带来速度提升的唯一因素,性能还会受到编写代码的方式和核的数量的影响

3、影响性能的五要素是:数据大小、源数据结构、值是否装箱、可用的CPU核数量,以及处理每个元素所花的时间

 //根据数字的大小,有不同的结果
    private static int size=10000000;
    public static void main(String[] args) {
        System.out.println("-----------List-----------");
        testList();
        System.out.println("-----------Set-----------");
        testSet();
    }

    /**
     * 测试list
     */
    public static void testList(){
        List<Integer> list = new ArrayList<>(size);
        for (Integer i = 0; i < size; i++) {
            list.add(new Integer(i));
        }

        List<Integer> temp1 = new ArrayList<>(size);
        //老的
        long start=System.currentTimeMillis();
        for (Integer i: list) {
            temp1.add(i);
        }
        System.out.println(+System.currentTimeMillis()-start);

        //同步
        long start1=System.currentTimeMillis();
        list.stream().collect(Collectors.toList());
        System.out.println(System.currentTimeMillis()-start1);

        //并发
        long start2=System.currentTimeMillis();
        list.parallelStream().collect(Collectors.toList());
        System.out.println(System.currentTimeMillis()-start2);
    }

    /**
     * 测试set
     */
    public static void testSet(){
        List<Integer> list = new ArrayList<>(size);
        for (Integer i = 0; i < size; i++) {
            list.add(new Integer(i));
        }

        Set<Integer> temp1 = new HashSet<>(size);
        //老的
        long start=System.currentTimeMillis();
        for (Integer i: list) {
            temp1.add(i);
        }
        System.out.println(+System.currentTimeMillis()-start);

        //同步
        long start1=System.currentTimeMillis();
        list.stream().collect(Collectors.toSet());
        System.out.println(System.currentTimeMillis()-start1);

        //并发
        long start2=System.currentTimeMillis();
        list.parallelStream().collect(Collectors.toSet());
        System.out.println(System.currentTimeMillis()-start2);
    }

调试

1、list.map.fiter.map.xx 为链式调用,最终调用collect(xx)返回结果

2、分惰性求值和及早求值

3、判断一个操作是惰性求值还是及早求值很简单:只需看它的返回值。如果返回值是 Stream,那么是惰性求值;如果返回值是另一个值或为空,那么就是及早求值。使用这些操作的理想方式就是形成一个惰性求值的链,最后用一个及早求值的操作返回想要的结果。

4、通过peek可以查看每个值,同时能继续操作流

private static void peekTest() {
        List<PersonModel> data = Data.getData();

        //peek打印出遍历的每个per
        data.stream().map(per->per.getName()).peek(p->{
            System.out.println(p);
        }).collect(toList());
    }

参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值