2023年的专业408算法题

11 篇文章 0 订阅
该博客介绍了如何在C++中实现有向图中K顶点的检测和计数。K顶点是指出度大于入度的顶点。算法思路是遍历邻接矩阵,分别计算每个顶点的入度和出度,输出出度大于入度的顶点并累计计数。在给出的例子中,展示了具体的图结构和代码实现,最后运行了示例代码并输出了K顶点的总数。
摘要由CSDN通过智能技术生成

0 结果

请添加图片描述

1 题目

对于一个有向图,如果一个顶点的出度大于入度,则这个顶点称为K顶点。有向图用邻接矩阵存储,数据结构定义如下:

typedef struct {
    int numVertices, numEdges;//顶点数、边数
    char VerticesList[MAXV];//顶点表
    int Edge[MAXV][MAXV];//邻接矩阵
}MGraph;

要求实现函数int printVertices(MGraph G),输出有向图中所有K顶点,并返回K顶点的总数。

要求:

(1)说明算法思想;
(2)用C/C++实现算法 。

2 思路

遍历有向图的所有顶点,并统计各顶点的入度(矩阵第i行元素个数)和出度(矩阵第i列的元素个数),输出出度大于入度的K顶点,使用count变量统计K顶点的总数。

3 实现

举例的图(摘自《王道》):
在这里插入图片描述

#include<iostream>
#include <vector>
const int MAXV = 6;//例c取值:6  例a取值:4

typedef struct {
    int numVertices, numEdges;//顶点数、边数
    char VerticesList[MAXV];//顶点表
    int Edge[MAXV][MAXV];//邻接矩阵
}MGraph;

int printVertices(MGraph G){
    int count = 0;//K顶点总数
    for (int i = 0; i < G.numVertices; ++i) {
        int in_degree = 0, out_degree = 0;
        for (int j = 0; j < G.numVertices; ++j) {
            if(G.Edge[i][j] > 0) out_degree++;
        }
        for (int j = 0; j < G.numVertices; ++j) {
            if(G.Edge[j][i] > 0) in_degree++;
        }
        if(out_degree > in_degree){
            count++;
            std::cout<<"K顶点为:"<<G.VerticesList[i]<<"\n";
        }
    }
    return count;
}


int main(){
    MGraph G;

    //例a:
//    for (int i = 0; i < 4; ++i) {
//        for (int j = 0; j < 4; ++j) {
//            G.Edge[i][j] = 0;
//        }
//    }
//    G.Edge[0][1] = 1;
//    G.Edge[0][2] = 1;
//    G.Edge[2][3] = 1;
//    G.Edge[3][0] = 1;
//    G.numVertices = 4;
//    G.numEdges = 4;
//    G.VerticesList[0] = '1';
//    G.VerticesList[1] = '2';
//    G.VerticesList[2] = '3';
//    G.VerticesList[3] = '4';

    //例c
    for (int i = 0; i < MAXV; ++i) {
        for (int j = 0; j < MAXV; ++j) {
            G.Edge[i][j] = 0;
        }
    }
    G.Edge[0][1] = 5;
    G.Edge[1][2] = 4;
    G.Edge[2][0] = 8;
    G.Edge[2][5] = 9;
    G.Edge[3][2] = 5;
    G.Edge[3][5] = 6;
    G.Edge[4][3] = 5;
    G.Edge[5][0] = 3;
    G.Edge[5][4] = 1;
    G.numVertices = 6;
    G.numEdges = 9;
    G.VerticesList[0] = '1';
    G.VerticesList[1] = '2';
    G.VerticesList[2] = '3';
    G.VerticesList[3] = '4';
    G.VerticesList[4] = '5';
    G.VerticesList[5] = '6';

    std::cout<<printVertices(G)<<"\n";

    return 0;
}

附录

408历年真题算法题解析

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

繁星蓝雨

如果觉得文章不错,可以请喝咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值