【机器学习-分类】一句话+一张图说清楚 Logistic回归 算法(附案例+代码)


说在前面
同一个算法本身存在各种不同的变体,即各种改进版本。一句话+一张图并不能涵盖所有情况,只是尽量用通俗的语言介绍其中经典的算法版本。希望对某算法本身不了解的人看完能迅速get到该算法在干什么;二刷该算法的人能够迅速回忆起算法核心思想和做法,做到能随口讲给别人听。

往期回顾
【机器学习-分类】一句话+一张图 说清楚kNN算法(附案例+代码)
【机器学习-分类】一句话+一张图说清楚决策树算法(附案例+代码)
【机器学习-分类】一句话+一张图说清楚朴素贝叶斯算法(附案例+代码)

一句话

Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的。其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式,以此进行分类。

一张图

在这里插入图片描述

案例

需要进行分类任务的数据如下:
在这里插入图片描述

分类代码如下(内含详细注释)

# -*- coding:utf-8 -*-
from numpy import *
###-----------------案例1:简单测试-----------------###

# =============================================================================
# 加载数据
# =============================================================================
def loadDataSet():
    dataMat = []; labelMat = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        #数据格式为第一列常数1、即X0,第二列为原数据第一列、即X1,同理第三例为X2
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

# =============================================================================
#  sigmoid跳跃函数
# =============================================================================
def sigmoid(inX):
    return 1.0/(1+exp(-inX))

# =============================================================================
# 改进的随机梯度下降算法
#      Args:
#        dataMatrix -- 输入数据的数据特征(除去最后一列数据)
#        classLabels -- 输入数据的类别标签(最后一列数据)
#        numIter=150 --  迭代次数
#      Returns:
#        weights -- 得到的最佳回归系数
# =============================================================================
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = shape(dataMatrix)    #m行n列数据
    weights = ones(n)   #初始化权重
    # 随机梯度, 循环150,观察是否收敛
    for j in range(numIter):
        dataIndex = list(range(m))
        for i in range(m):
            alpha = 4/(1.0+j+i)+0.0001    #随着迭代,超参数不断减小
            # 随机产生一个 0~len()之间的一个值
            # random.uniform(x, y) 方法将随机生成下一个实数,它在[x,y]范围内,x是这个范围内的最小值,y是这个范围内的最大值。
            randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
            # sum(dataMatrix[i]*weights)为了求 f(x)的值, f(x)=a1*x1+b2*x2+..+nn*xn
            h = sigmoid(sum(dataMatrix[randIndex]*weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            del(dataIndex[randIndex])
    return weights

# =============================================================================
# 绘制最好的拟合曲线
# =============================================================================
def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0] 
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()

# =============================================================================
# 分类函数,根据回归系数和特征向量来计算 Sigmoid的值
# =============================================================================
def classifyVector(inX, weights):
    prob = sigmoid(sum(inX*weights))
    if prob > 0.5: return 1.0
    else: return 0.0

# =============================================================================
# 简单测试
# =============================================================================
def simpleTest():
    #加载数据
    dataArr,labelMat=loadDataSet()
    #计算优化权重
    weights=stocGradAscent1(array(dataArr),labelMat)
    plotBestFit(weights)
    #预测一个新样本
    #数据为X0,X1,X2
    prob=classifyVector([1.0,1.0,9.0], weights)
    print(prob)

# =============================================================================
# 主函数
# =============================================================================
if __name__ == "__main__":
    simpleTest()

拟合曲线结果如下图
在这里插入图片描述
最后一组数据测试分类结果为第0类。

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 下面是一个简单的逻辑回归分类算法的 Python 代码示例: ```python import numpy as np class LogisticRegression: def __init__(self, learning_rate=0.01, num_iterations=100000, fit_intercept=True): self.learning_rate = learning_rate self.num_iterations = num_iterations self.fit_intercept = fit_intercept def sigmoid(self, z): return 1 / (1 + np.exp(-z)) def fit(self, X, y): if self.fit_intercept: intercept = np.ones((X.shape[0], 1)) X = np.hstack((intercept, X)) # 初始化权重 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iterations): z = np.dot(X, self.theta) h = self.sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size self.theta -= self.learning_rate * gradient def predict_prob(self, X): if self.fit_intercept: intercept = np.ones((X.shape[0], 1)) X = np.hstack((intercept, X)) return self.sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold ``` 这里我们定义了一个 `LogisticRegression` 类,它有以下几个方法: - `__init__`:初始化逻辑回归模型的超参数,包括学习率、迭代次数和是否拟合截距项。 - `sigmoid`:sigmoid 函数,用于将线性函数的输出转换为概率值。 - `fit`:训练模型的方法,使用梯度下降算法来更新权重。 - `predict_prob`:给定输入数据,返回模型预测的类别概率。 - `predict`:给定输入数据和阈值,返回模型预测的类别。 在使用时,首先需要创建一个 `LogisticRegression` 类的实例,然后调用 `fit` 方法来训练模型。训练完成后,可以使用 `predict_prob` 方法来预测类别的概率,或使用 `predict` 方法来预测具体的类别。 ### 回答2: 逻辑回归是一种常用的机器学习算法,用于解决二分类问题。其基本原理是利用线性回归模型的预测结果通过一个sigmoid函数转换成0或1的概率值进行分类预测。 以下是一个简单的机器学习逻辑回归分类算法代码: 1. 导入所需的库: ```python import numpy as np from sklearn.linear_model import LogisticRegression ``` 2. 准备数据: ```python X = np.array([[x1, x2], [x1, x2], ..., [x1, x2]]) # 特征矩阵,每行代表一个样本的特征向量 y = np.array([y1, y2, ..., yn]) # 标签向量,表示每个样本的类别 ``` 3. 创建逻辑回归模型对象: ```python model = LogisticRegression() ``` 4. 使用训练数据进行模型训练: ```python model.fit(X, y) ``` 5. 对新样本进行分类预测: ```python new_sample = np.array([x1, x2]) # 待预测的新样本的特征向量 predicted_class = model.predict([new_sample]) # 预测样本的类别 ``` 以上是一个简单的机器学习逻辑回归分类算法代码实现。要注意的是,在实际应用中,可能需要进行特征工程、数据预处理、模型评估等步骤来提高分类效果。此外,可以通过调整模型的参数,如正则化系数等,来优化模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值