用人话讲明白逻辑回归Logistic regression

文章目录1.从线性回归说起2.sigmond函数3.推广至多元场景4.似然函数5.最大似然估计6.损失函数7.梯度下降今天梳理一下逻辑回归,这里的“逻辑”是音译“逻辑斯蒂”的缩写,并不是说这个算法具有怎样的逻辑性。该算法由于简单、实用、高效,在业界应用十分广泛。前面说过,机器学习算法中的监督式学习可以分为2大类:分类模型:目标变量是分类变量(离散值);回归模型:目标变量是连续性数值变量...
摘要由CSDN通过智能技术生成


今天梳理一下逻辑回归,这个算法由于简单、实用、高效,在业界应用十分广泛。注意咯,这里的“逻辑”是音译“逻辑斯蒂(logistic)”的缩写,并不是说这个算法具有怎样的逻辑性。

前面说过,机器学习算法中的监督式学习可以分为2大类:

  • 分类模型:目标变量是分类变量(离散值);
  • 回归模型:目标变量是连续性数值变量。

逻辑回归通常用于解决分类问题,例如,业界经常用它来预测:客户是否会购买某个商品,借款人是否会违约等等。

实际上,“分类”是应用逻辑回归的目的和结果,但中间过程依旧是“回归”

为什么这么说?

因为通过逻辑回归模型,我们得到的计算结果是0-1之间的连续数字,可以把它称为“可能性”(概率)。对于上述问题,就是:客户购买某个商品的可能性,借款人违约的可能性。

然后,给这个可能性加一个阈值,就成了分类。例如,算出贷款违约的可能性>0.5,将借款人预判为坏客户。

1.从线性回归说起

考虑最简单的情况,即只有一个自变量的情况。比方说广告投入金额x和销售量y的关系,散点图如下,这种情况适用一元线性回归。
在这里插入图片描述
线性回归的介绍文章戳这里:用人话讲明白线性回归LinearRegression

但在许多实际问题中,因变量y是分类型,只取0、1两个值,和x的关系不是上面那样。假设我们有这样一组数据:给不同的用户投放不同金额的广告,记录他们购买广告商品的行为,1代表购买,0代表未购买。
在这里插入图片描述
假如此时依旧考虑线性回归模型,得到如下拟合曲线:
在这里插入图片描述

线性回归拟合的曲线,看起来和散点毫无关系,似乎没有意义。但我们可以在计算出 y ^ \hat{y} y^的结果后,加一个限制,即 y ^ > 0.5 \hat{y}>0.5 y^>0.5,就认为其属于1这一类,购买了商品,否则认为其不会购买,即:
y ^ = { 1 , f ( x ) > 0.5 0 , f ( x ) ≤ 0.5 \hat{y}=\left\{\begin{array}{l}1, f(x)>0.5 \\ 0, f(x) \leq 0.5\end{array}\right. y^={ 1,f(x)>0.50,f(x)0.5

由于拟合方程为 y ^ = 0.34 ∗ x \hat{y}=0.34*x y^=0.34x,那么上面的限制就等价于:
y ^ = { 1 , x > 1.47 0 , x ≤ 1.47 \hat{y}=\left\{\begin{array}{l}1, x>1.47 \\ 0, x \leq 1.47\end{array}\right. y^={ 1,x>1.470,x1.47

这种形式,非常像单位阶跃函数:
y = { 0 , z < 0 0.5 , z = 0 1 , z > 0 y=\left\{\begin{array}{l} 0, z<0 \\ 0.5, z=0 \\ 1, z>0 \end{array}\right. y=0,z<00.5,z=01,z>0

图像如下:
在这里插入图片描述
我们发现,把阶跃函数向右平移一下,就可以比较好地拟合上面的散点图呀!但是阶跃函数有个问题,它不是连续函数。

理想的情况,是像线性回归的函数一样,X和Y之间的关系,是用一个单调可导的函数来描述的

2.sigmond函数

实际上,逻辑回归算法的拟合函数,叫做sigmond函数:
f ( z ) = 1 1 + e − z f(z)=\frac{1}{1+e^{-z}} f(z)=1+ez1

函数图像如下(百度图片搜到的图):
在这里插入图片描述
sigmoid函数是一个s形曲线,就像是阶跃函数的温和版,阶跃函数在0和1之间是突然的起跳,而sigmoid有个平滑的过渡。

从图形上看,sigmoid曲线就像是被掰弯捋平后的线性回归直线,将取值范围(−∞,+∞)映射到(0,1) 之间,更适宜表示预测的概率,即事件发生的“可能性”


3.推广至多元场景

用人话讲明白梯度下降Gradient Descent一文中,我们讲了多元线性回归方程的一般形式为:

y = β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β p x p y={\beta}_{0}+{\beta}_{1} {x}_{\mathbf{1} }+{\beta}_{2} {x}_{2 }+\cdots+{\beta}_{p}{x}_{p} y=β0+β1x1+β2x2++βpxp

可以简写为矩阵形式:
Y = X β \boldsymbol{Y}=\boldsymbol{X}\boldsymbol{\beta} Y=Xβ

其中, Y = [ y 1 y 2 ⋮ y n ] , X = [ 1 x 11 ⋯ x 1 p 1 x 21 ⋯ x 2 p ⋮ ⋮ ⋮ 1 x n 1 ⋯ x n p ] , β = [ β 0 β 1 ⋮ β p ] \boldsymbol{Y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right], \boldsymbol{X}=\left[\begin{array}{cccc}1 & x_{11} & \cdots & x_{1 p} \\ 1 & x_{21} & \cdots & x_{2 p} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n 1} & \cdots & x_{n p}\end{array}\right], \boldsymbol{\beta}=\left[\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{p}\end{array}\right] Y=y1y2yn,X=111x11x21xn1x1px2pxnp,β=β0β1

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: Logistic回归是一种逻辑回归方法。它是一种特殊的回归方法,用于对于分类问题中的因变量建立预测模型。这种方法基于学习一个由输入变量到二元输出变量的条件概率来构建预测模型,用于对一个新的样本进行分类。它对于分类问题中的因变量建立预测模型非常有效。 ### 回答2: 逻辑回归是一种用于解决二分类问题的监督学习算法。它是一种基于概率统计的分类模型,可以用于预测分类结果。逻辑回归的输出结果是一个0到1之间的概率值,其含义是该样本属于某一类别的概率。 逻辑回归模型的基本假设是数据服从伯努利分布,也就是数据只有两种可能的取值,被称为正类和负类。对于给定的训练数据集,逻辑回归模型的目标是最大化似然函数,即最大化样本属于正类(或负类)的概率。利用最大似然估计方法,我们可以求解出逻辑回归模型的参数。在实际应用中,我们通常使用梯度下降等优化算法来求解模型参数。 逻辑回归模型有多种变体,如L1正则化逻辑回归、L2正则化逻辑回归、多项式逻辑回归等。其中,L1正则化逻辑回归可以实现特征选择,可以削减一些不重要的特征,从而简化模型,提高计算速度和模型的泛化能力。 在机器学习领域,逻辑回归是一个常用的模型。它广泛应用于各种领域,如网络广告点击率预测、信用风险评估、医疗诊断等。逻辑回归模型简单易实现,具有较高的解释性,是一个较为理想的分类算法。 ### 回答3: 逻辑回归Logistic Regression)是一种经典的分类算法,在机器学习和统计学领域中得到广泛的应用。它旨在从已有的数据中构建一个能够预测类别的模型,输出结果为概率值,可以用于二分类或多分类问题的解决。 逻辑回归的基本原理是利用一个特定的函数对输入特征进行线性组合,然后将结果输入到一个Sigmoid函数中进行映射,将结果值压缩到0到1的范围内,表示输入属于某一类别的概率。这个Sigmoid函数可以被看作是一个阀门,控制着数据流向最终输出。它将具有很强预测能力的线性组合函数输出转化为概率输出的过程,将出现在中间层的结果值映射到[0,1]范围内,以表达某个样本属于某个类别的概率。 在训练模型时,逻辑回归使用的是最大似然估计的方法来确定模型的参数。在分类训练数据时,需要对样本经过一系列的处理,例如特征提取、特征转换、数据归一化等步骤。训练数据可以通过梯度下降法、牛顿迭代法等优化方法来确定最佳参数。通过此训练过程,模型可以学习到输入特征与输出概率之间的映射关系。 逻辑回归的优点包括了功能简单、速度快、易于实现和修改等等。它是机器学习中最为基本的分类算法之一,在数据挖掘、信用评估、自然语言处理、广告推荐等领域都有广泛的应用。逻辑回归作为一个二分类算法,常被用于解决分类问题。然而,在实际业务中,如何选择不同的逻辑回归模型及参数,对算法的效果和优化有着重要的影响。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值