论文地址:https://arxiv.org/pdf/1902.01374.pdf
Table of Contents
主要贡献:
- 该系统使用不成对的雾和无雾训练图像,对抗性鉴别器和循环一致性损失来自动构建除雾系统;
- 通过嵌入大气散射模型的原理和天空先验知识,训练CNN网络进行训练数据的合成;
- 提供一个数据集(MRFID)包含200个自然户外场景的图像;
- 所使用的评价标准是new visible edges e,contrast restoration r,
缺陷:
- CycleDefog2Refog无法处理大雾;原因是当前大气降解模型在这种情况下不能再准确地描述雾图,在未来的工作中,希望通过专门优化此模型并构建多种多雾的数据集来训练我们的网络来解决这个问题;
- 处理的图像有些过于平滑,损失了图像细节;
- 近景偏暗,远景雾气没有去除的很好。
0.论文提出的数据集(MRFID)(尚未开源)
包含200个自然户外场景
图像是从固定摄像机在一年的过程中拍摄的一系列图像中手动选择的不同雾密度
一个场景 》》》一个清晰图像 》》》四个相应的四个雾密度图像
包括200个清晰的户外图像和800个具有不同雾密度的模糊图像