求职浅谈时间序列

前言

开源时间序列,时空序列也有几年了吧,陆陆续续收到各种朋友的支持和认可,总是在各个平台,都有这样的声音。

咱做这个方向最后工作到底做什么啊?去公司哪个部门合适昂?

对于付出,每个人都在追求付出的结果,也就是扪心自问,自己的付出到底值不值,每个人都想追寻那个最优解,对于学算法的同学来说,学习这个方向是否需求量大,是否有需求,是否值得学习,更简单直接的问法:学习这个方向到底好不好找工作,好不好搞钱,是个偶尔会想起来问问自己的问题。

因为本身我是做这个方向的,其实我对这个方向也做了小一段时间,虽然说不上什么专家,牛逼人士,但是起码是个爱分享的开源者,所以我准备在这里分享下这个事情,一来是以后别人再问我,直接把这篇文章甩过去,省得大家互相的时间,二来也算是做个总结。

这个话题我大概会用几篇文章来通俗易懂的,尽量全面的浅谈,几篇文章我的想法是,时间序列,时空序列,数据挖掘,机器学习等用几篇文章来说。

对于时间序列大致三个问题

  1.  我们应该投递公司什么岗位?

  2.  我们具体可以目标在公司哪些部门?(相对match) 

  3.  我们具体可能会接触什么业务背景?(时间序列只是个方向,用在什么背景下,实则还是有很多需求的不同)

一、 我们应该投递公司什么岗位?

一般来说,如果是时间序列方向,我推荐各位投递机器学习算法岗。

对于计算机视觉,推荐算法,以及自然语言处理来说,基本上各家公司都是有专门的岗位设置,这三类,基本上属于比较统一的大方向了,其次还有强化学习,强化学习基本上主要在无人驾驶和游戏公司/部门存在。

对于机器学习算法岗位,其实也是涵盖以上的各种方向,这可能就是互联网的一种特性,其实和你的岗位投递关系不大,对于算法来说,你以后从事的方向,很大概率取决于你面试部门是什么方向,这个方向你是否能接受,你最终是否拿到并接受了这个offer。

就拿我身边很多朋友来讲,其实大家基本上投递岗位后,方向也有很多(主要也是背景不同),还有比较重要的一点,就是方向其实有很多通性。

但为了尽量match,match的好处是级别更高,薪资更高,offer等级更高的概率更大,并且方向肯定是你想走的方向。

一般来说,我还没发现有互联网公司把时间序列单独拿出来单列一个方向,我个人觉得原因有以下几点:

  • 岗位需求确实没有搜广推,nlp那么多

  • 一般来说时间序列并非一个大的工作范围,很可能是很多工作中的一环

  • 由于第二点,引出第三点,业务背景多样,一般倾向于找到基础好,能力强的来培养,能找到match的就赚了,找不到也正常。

2. 我们具体可以目标在公司哪些部门?(相对match) 

3.  我们具体可能会接触什么业务背景?(时间序列只是个方向,用在什么背景下,实则还是有很多需求的不同)

以上两个问题,一同说明,虽然是两个问题,但两者有非常紧密的关系

一般来说时间序列的业务背景主要在

  • 交通

  • 气象

  • 流量

  • 金融

  • 指标

对于交通而言,其实有很多时间序列的预测部分,但最近的话,基本上都往时空上靠了,但还是会涉及一些时间序列的预测,我个人觉得就应该更加采用时空的方式来共同决定任务的结果,毕竟交通而言,空间的作用也非常之大,那么引出对于公司来说,其实最主要是智能交通,城市计算等,那么我们更加深化这个业务背景,目前存在于互联网公司中主要以打车,共享单车,地图等等方式存在,但其中打车和地图的业务可能更倾向于时空,其实不深入的了解,很多都是表层,之前和对应的部门技术leader深入聊过这方面的问题,就打车而言,定价、如何预测某个地区点的需要打车的客户量也是十分重要的环节。

总结一下,这里只是简单列举一些部门,大家可以补充:

  • 阿里高德

  • 百度地图

  • 腾讯地图

  • 美团智能交通(包括打车)

  • 京东智能城市研究院(郑宇团队,估计做时序的大家都不陌生吧)

  • 滴滴打车

对于气象而言,如果把时空这块扣掉的话,主要是对每个站点的obs(观察的真实气象数据做未来一段时间的预测,大多是温度或者降水量),比如也有很多比赛可以参考,例如下面的这个方案可以参考,代码也可以当作入门来看,还是很不错的,作者是我日常会技术交流的一位朋友,目前在某大厂做时间序列。

AI Challenger 2018 Weather Forecasting - 1st Place Solution

https://github.com/fengyang95/AIC_Weather_Forecasting

其实气象的玩法也比较多了,光就时间序列而言,主要是obs的预测,以及如何把模式数据(一种比较传统但十分强大稳定的方式预测结果)进行比较好的融合。

但这方面如果不说时空,只说时序,现在互联网大厂在做的还是有些少的,可能都是在比较辅助的做,如果涉及气象AI这块互联网公司部门主要有。

  • 微软工程院STCA bing下有一个团队做这方面,但偏时空

  • 阿里达摩院 视觉团队 这个偏CV

  • 彩云天气(气象AI公司) 偏时空

  • 佳格天地(气象AI公司) 偏时空

对于流量而言,一般来说,都是流量预测任务,主要的背景可能是搜广推下的流量预测 比如广告流量预测,或者平台的流量预测,本质上都是单变量,或者多变量的时间序列预测问题。

这一类基本上也都属于为其他任务辅助的一环,其实我个人而言也是因为很多朋友才知道这个隐藏的小方向,主要的部门是(这方面相对来说比较少,可能也不是长期做,这个项目是这个需求,下一个可能也不做这方面了),列举一下我知道有这方面需求的部门,

  • 阿里妈妈(偏广告流量预测)

  • 蚂蚁(偏金融水位预测等等)

对于金融而言,这个基本上指的就是量化,这个具体工作内容我其实个人不是那么清楚,刚开始知道这个需求很大,也是因为总有量化的公司联系我看是否看看那边的机会,但我个人并没那么大兴趣,一来感觉自己没那个能力,其次没有多少证券金融等等知识基础。涉及得公司大多都是证券类,量化类的公司,这方面我个人来说还是认识浅薄,知道的可以补充。

  • 幻方量化(大家估计对量化这个还比较陌生,但是这个领域需求还是挺大的,并且门槛可能要更高,有兴趣的可以去幻方的杭州AI lab看看招聘JD)

  • 龙旗科技

对于指标而言,一般论文里会把指标称为metric或者KPI,这方面我最近一段时间研究略多,可以和大家多介绍一些,对于这种指标类的,其实和流量类有一些联系和区别,联系在于流量也可以称之为一种指标,而区别在于,如果把指标单个拿出来作为方向,其实更多应用的并非预测,而是异常检测,如果就算是利用到了预测,其实也是为了更好的异常检测。

这个方向一般来说,大家喜欢称之为AIOps.

其实就是智能运维,之后我可能会有数年在这个领域下进行深耕,如果大家有兴趣我可以浅谈一些这方面的内容。

一般来说智能运维的场景,大多数分布式,大数据的平台下的运维,背景主要是银行或者云计算的场景,因为在此类场景下,如果手动的去进行运维,其实花费的时间是巨大的,并且会有很多on call的麻烦,并且系统的复杂会加大运维的难度,那话说回来,指标预测或者异常检测在哪里呢?

主要是对于机器级别的指标的异常检测,机器细分的话可能存在上百个,几十个指标,这些指标互相还有某种联系,所以这里可以衍生到多变量的时间序列的关系,或者异常检测,现在还有用graph去尝试解决的,但这类问题检测到异常可能只是第一步,最重要的是找到多条时序以及多模态之间的关系,找到最终的root cause(也就是根因分析,找到最终导致异常的原因)。

能去的地方大多是金融相关,银行公司,基础架构或者云计算的地方。

  • 阿里云

  • 腾讯云

  • 字节基础架构

  • 蚂蚁

  • ebay

  • 必示科技

  • research相关

    • MSRA DKI组(我之前实习过,十分nice)

    • 清华netman实验室

    • 华为诺亚方舟实验室

今天就说这么多吧,没想到一下子没收住,说的有点多了~

公众号:AI蜗牛车

保持谦逊、保持自律、保持进步

61d032d78bc8cd030e9434e8ae7df601.png

个人微信

备注:昵称+学校/公司+方向

如果没有备注不拉群!

拉你进AI蜗牛车交流群

c931d94fcda08b329b3429b1bef7b831.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值