【机器学习】SVM中对函数间隔和几何间隔的理解

超平面表达式:
在这里插入图片描述

函数间隔 : 对于在超平面上的点, w x + b = 0 wx+b=0 wx+b=0 恒成立。而超平面之外的点,可以认为距离越远, w x + b wx+b wx+b 的绝对值越大,同时分类成功的概率也越高,表达式为:
![在这里插入图片描述](https://img-blog.csdnimg.cn/15f20549a9e943d2a66edc5dc44ebdc6.png

几何间隔 : 顾名思义,几何间隔就是两条平行线之间的距离,表达式为:
在这里插入图片描述

考虑SVM的目标,是要使所有样本点中几何间隔的最小值尽可能大
在这里插入图片描述

即最优化问题为:
在这里插入图片描述

将约束条件的左右两边同时乘以 ∣ ∣ w ∣ ∣ ||w|| w,可以得到表达式: y i ( w ⋅ x i + b ) ≥ γ ⋅ ∣ ∣ w ∣ ∣ y_i(w·x_i+b)≥γ·||w|| yi(wxi+b)γw

可以发现此时左边是函数间隔的表达式,回到函数间隔的本身意义,它表示空间中任一点到分类超平面 w ⋅ x i + b = 0 w·x_i+b=0 wxi+b=0相对距离,如果对超平面表达式两边乘以一个系数,相当于对该平面作一个线性空间的映射,例如将 2 x + 2 = 0 2x+2=0 2x+2=0 的两端同时乘以 0.5 0.5 0.5,得到 x + 1 = 0 x+1=0 x+1=0,表示新的基底向量下的平面空间。

相应的,空间中任一点到该平面的相对距离也会成比例增加或者减小。因此,对于 y i ( w ⋅ x i + b ) ≥ γ ⋅ ∣ ∣ w ∣ ∣ y_i(w·x_i+b)≥γ·||w|| yi(wxi+b)γw,相当于对于此超平面,空间中任一点到它的相对距离是 γ ⋅ ∣ ∣ w ∣ ∣ γ·||w|| γw假设我们站在上帝视角已经得到了一个超平面 w ⋅ x i + b = 0 w·x_i+b=0 wxi+b=0,不妨对此超平面做一个映射,也就是令两端同时除以系数 γ ⋅ ∣ ∣ w ∣ ∣ γ·||w|| γw,映射到新的线性空间,那么点与平面的相对距离也是同时映射过去的,换句话说,映射操作不对点到平面的相对距离发生变化,因此可以在一开始就令 γ ⋅ ∣ ∣ w ∣ ∣ = 1 γ·||w||=1 γw=1

又由于最大化 γ γ γ 等价于最大化 1 ∣ ∣ w ∣ ∣ \frac{1}{||w||} w1,等价于最小化 1 2 ∣ ∣ x ∣ ∣ 2 \frac{1}{2}||x||^2 21x2 1 2 \frac{1}{2} 21是为了方便后面求导

这时,SVM模型求约束下的最大分割超平面又可以表示成:

根据以上的推导,这是映射到新线性空间后的表达式

(根据以上的推导,这是映射到新线性空间后的表达式)

此时,经过我们一系列映射、转换的方式,原问题变成了含有不等式约束的凸二次规划问题。

可视化验证:
以下是某个模型对于两个测试集的svm分类结果,精度分别为1和0.9980:
在这里插入图片描述

当讲常数1改为100后,得到的分类结果如下:

在这里插入图片描述

精度分别为1和0.9980,与常数为100时一致,但是空间被拉伸,两条虚线之间的相对距离很大

当讲常数1改为0.01后,得到的分类结果如下

在这里插入图片描述

同时精度仍然为1和0.9980,常数为1时保持不变,但可以发现空间被压缩,两条虚线之间的距离非常小以至于看不见

  • 0
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值