关于 DataFrame :制作训练集:匹配关键词打标签,合并数据

数据1:商品名称

ids = [x for x in range(5)]
name = ['新疆 肠子 伊犁 马肠 马肉 哈萨克 风味 美食 开袋 即食',
        '新疆 伊犁 伊卡 马肠 马肉 马肠 哈萨克族 生薰 马肠 清真 肉类 马肉',
        '新疆 烤马 肠子 马肉 孜然 开袋 即食 特产小吃 香辣 零食 切片 烤肉 18 0g',
        '澳华 奶粉 开口 鱼虾 幼苗 鱼苗 种苗 蛙苗 鱼花 开口 渔药 训料 虾苗',
        '天然 食用 螺旋藻片 观赏虾 水晶 虾苗 鱼苗 开口 鱼食 增色 鱼饲料'
       ]
validation1 = pd.DataFrame(data = name,columns = ['name'],index = ids )
validation1

在这里插入图片描述
数据2:id及对应关键词

ids = [x for x in range(2)]
name_list = {
    'ncpcat_id':['14011101005','14011101006'],
    'ncpcat_name_3':['马肉','鱼苗']
}
validation2 = pd.DataFrame(data = name_list,index = ids)
validation2

在这里插入图片描述
生成训练集:

# 检查完毕,之前写错了两点:没有必要的两重循环 (解决:enumerate());concat 操作应该放到循环内
df_test = pd.DataFrame(columns = ['name','ncpcat_id','ncpcat_name_3'])
length = len(validation2)
for index,x in enumerate(validation2['ncpcat_name_3'].values):
    temp_df = validation1[validation1['name'].str.contains(x) == True].iloc[:,:1]
    temp_df.columns = ['name']
    temp_df['ncpcat_id'] = validation2['ncpcat_id'][index]
    temp_df['ncpcat_name_3'] = validation2['ncpcat_name_3'][index]
    frames = [df_test,temp_df]
    df_test = pd.concat(frames,ignore_index = True)
df_test

在这里插入图片描述

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值